UT to Clarke Creek Stream and Wetland Restoration Site Annual Final Monitoring Report

DMS # 92500 DENR Contract # 005363 USACE Action ID # SAW-2010-00471 DWR Project # 11-0409 SCO # 09-07763-01 DLR (Land Quality) Project # MECK-2012-034

> Monitoring Report Year 3 of 5 Mecklenburg County, North Carolina

Submitted to:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

Data Collection: October 2016 Report Submission: January 2017

1025 Wade Avenue Raleigh, NC 27605

UT to Clarke Creek Stream and Wetland Restoration DMS Project #92500

Monitoring Report Year 3 of 5 Mecklenburg County, North Carolina

TABLE OF CONTENTS

Introduction	1
1.0 Project Summary	2
1.1 Project Setting and Background	
1.2 Project Goals and Objectives	2
1.3 Success Criteria	3
1.3.1 Stream Morphology and Channel Stability	3
1.3.2 Wetlands	3
1.3.3 Vegetation	4
1.4 Project History, Contacts, and Attribute Data	
2.0 Methodology	5
3.0 References	6

APPENDICES

APPENDIX A: BACKGROUND TABLES

- Table 1a Project Components
- Table 1b Component Summations
- Table 2 Project Activity and Reporting History
- Table 3 Project Contacts
- Table 4 Project Attributes

APPENDIX B: VISUAL ASSESSMENT DATA

- Figure 1 Vicinity Map
- Figure 2A-D Current Condition Plan View
- Figure 3 Components Map
- Table 5a Visual Stream Morphology Stability Assessment UT to Clarke Creek
- Table 5b Visual Stream Morphology Stability Assessment UT1
- Table 6 Vegetation Condition Assessment
- Photos Permanent Photo Points
- Photos Vegetation Plots

APPENDIX C: VEGETATION PLOT DATA

Table 7 – Vegetation Plot Mitigation Success Summary Table 8 – CVS Vegetation Metadata Table 9 – CVS Planted and Total Stem Counts (Stems and Species by Plot with Annual Means)

APPENDIX D: STREAM SURVEY DATA

Year 3 Cross-Sections Year 3 Longitudinal Profiles Year 3 Pebble Count Plots Table 10a – Baseline Stream Data Summary – UT to Clarke Creek Table 10b – Baseline Stream Data Summary – UT1 Table 11a – Monitoring Data – Dimensional Morphology Summary (Dimensional Parameters – Cross Sections) Table 11b – Monitoring Data – Stream Reach Data Summary – UT to Clarke Creek Table 11c – Monitoring Data – Stream Reach Data Summary – UT1

APPENDIX E: HYDROLOGIC DATA

Table 12 – Verification of Bankfull Events Figure 4 – Monthly Rainfall Data Figures 5-15 – Precipitation and Water Level Plots for Each Gauge Table 13 – Wetland Hydrology Criteria Attainment

INTRODUCTION

The UT Clarke Creek Stream and Wetland Restoration Project (Site) is located in Mecklenburg County, North Carolina near the Town of Huntersville. The property parcel is owned by Mecklenburg County and is referred to as Clark's Creek Nature Preserve. The project consisted of approximately 4,594 linear feet of existing streams on the site within the USGS cataloging unit Yadkin 03040105. The project site was assessed in the Upper Rocky River Local Watershed Plan (LWP) that was prepared for DMS by MACTEC in 2004. The LWP identified the major stressors in the watershed: stream bank erosion, lack of adequate forested buffer, stream channelization, agricultural impacts, land use changes, sedimentation, point source in-stream impacts, nutrients, and fecal coliform bacteria.

Restoration goals for this project include:

- Reduce sediment stressors caused by stream bank erosion and shear stress along the reach.
- Improve stream bank stability and sediment transport efficiency.
- Provide for uplift in water quality functions and nutrient filtration.
- Provide for greater overall stream and wetland habitat complexity and quality, and
- Improve and maintain riparian buffer habitat.

The project objectives include:

- Implement a sustainable, reference-based, rehabilitation of the project reaches' dimension to support sediment transport equilibrium.
- Provide a sustainable and functional bankfull floodplain feature and reslope banks at a more stable slope.
- Strategically install stream structures and plantings designed to maintain lateral stability and habitat to the stream channel.
- Install, augment, and maintain appropriate vegetative riparian buffer and riverine wetland community types with sufficient density and vigor to support native vegetation. The buffer should have a minimum width of 50 feet (ft) on each side of project streams and consist of a mix of native species representative of a bottomland hardwood forest, and
- Restore and/or enhance the natural hydrology, vegetation, and soil composition in adjacent wetlands.

This report documents the completion of the restoration construction activities and presents year 3 monitoring data for the post-construction monitoring period. Table 1 (Appendix A) summarizes site conditions before and after restoration, as well as the conditions predicted in the previously approved Mitigation Plan.

1.0 PROJECT SUMMARY

1.1 Project Setting and Background

The UT Clarke Creek stream and wetland restoration project is located in Mecklenburg County, North Carolina, in the Yadkin-Pee Dee River Basin (USGS cataloging unit 03040105), DWR Subbasin 30711 (Figure 1). The project lies within Clark's Creek Nature Preserve, a 57.2 acre property owned by Mecklenburg County. The project restored 3,155 linear feet of stream and preserved 1,051 linear feet of stream and restored or preserved 1.457 acres of wetlands (Table 1). Prior to construction, the project site had problems with channelization, bank instability, and a limited riparian buffer zone. Areas of mass wasting, bank slumping, incision, and sediment deposition were evident in all reaches. Backwater effects from beaver dams also caused aggradation and habitat loss. The project aimed to reduce the major stressors identified in the LWP which include stream bank erosion, lack of adequate forested buffer, stream channelization, and sedimentation.

1.2 Project Goals and Objectives

The goals and objectives of this project focus on improving water quality and restoring physical habitat. These goals and objectives are stated in the UT Clarke Creek Mitigation Plan (2011).

Goals:

- 1. Reduce sediment stressors caused by stream bank erosion and shear stress along the reach.
- 2. Improve stream bank stability and sediment transport efficiency.
- 3. Provide for uplift in water quality functions and nutrient filtration.
- 4. Provide for greater overall stream and wetland habitat complexity and quality, and
- 5. Improve and maintain riparian buffer habitat.

Objectives:

- 1. Implement a sustainable, reference-based, rehabilitation of the project reaches' dimension to support sediment transport equilibrium.
- 2. Provide a sustainable and functional bankfull floodplain feature and reslope banks at a more stable slope.
- 3. Strategically install stream structures and plantings designed to maintain lateral stability and habitat to the stream channel.
- 4. Install, augment, and maintain appropriate vegetative riparian buffer and riverine wetland community types with sufficient density and vigor to support native vegetation. The

buffer should have a minimum width of 50 feet on each side of project streams and consist of a mix of native species representative of a bottomland hardwood forest, and

5. Restore and/or enhance the natural hydrology, vegetation, and soil composition in adjacent wetlands.

1.3 Success Criteria

The following success criteria are provided from the NCEEP *Mitigation Plan Document Guidance* and the Army Corps of Engineers (ACOE) (2003).

1.3.1 Stream Morphology and Channel Stability

Restored or enhanced streams should demonstrate morphological stability to be considered successful. Any deviations will be evaluated to determine whether changes are indicative of instability. Stability will be based on permanent cross sections, longitudinal profile, substrate analysis, sediment transport, and evidence of bankful events.

Both reaches' profiles and cross sections adjusted minimally from the monitoring year 1 conditions. The channels access the floodplain and evidence of bankfull events were observed during Year 3 monitoring. This evidence includes the presence of wracklines and a crest gauge reading of 12.5" above bankfull on UT1 and 24" above bankfull on UT to Clarke Creek.

On UT to Clarke Creek areas of channel widening which were observed during the May 2016 Site Assessment at Stations 1+00, 3+75, 6+50 are still present. Vegetation observed in the channel between Station 1+78 and 2+41 is now absent. The area of bare bank from Stations 2+85 to 3+00, 4+90 to 5+29, and 11+00 to 11+30 is also still present. One area of bare floodplain was observed between Stations 10+68 and 10+88. Cross Sections 1A and 9 showed an increase in D50 compared to MY02 (but less than baseline) while Station 7+50 showed a decrease in D50 compared to MY02. The increase in particle size at Cross Section 9 may be attributed to the loss of vegetation in the channel and subsequent fine sediment removal at Station 1+78 and 2+41. The particle size increase at Cross Section 1A may be attributed to the channel widening at Station 6+50.

Reach UT1 had one area of bare bank between Stations 4+78 to 5+37. This area was lacking significant woody and herbaceous vegetation. Two instances of bare floodplain were observed between Stations 7+65 to 7+87 and 6+97 to 7+37. Cross Section 4 showed an increase in particle size for this monitoring year compared to the previous year but still less than baseline condition.

1.3.2 Wetlands

Wetland hydrology attainment will be monitored in accordance to the ACOE (2003) standards. The target wetland hydrological success criterion is saturation or inundation for at least 12.5 percent of the growing season in the lower landscape (floodplain) positions. To achieve the hydrologic success criterion, groundwater levels must be within 12 inches of the ground surface

for 29 consecutive days, which is 12.5 percent of the March 22 to November 11 (232 days) growing season. Eight Ecotone Water Level Loggers were established within the wetland restoration, creation, and preservation areas to monitor groundwater levels during the growing season. Three more loggers were placed during the 2015 growing season. Wells 3, 5, 6, 8, 9, 10, and 11 were placed within the wetland boundaries to provide hydrologic data for the restored and enhanced wetland areas. Wells 2, 4, and 7 were placed outside the wetland boundaries to confirm the upland boundaries of the same wetlands. Well 1 was placed within the wetland preservation to provide reference conditions for the restored and enhanced wetlands in the project.

Only Well 1 met the hydrology success criteria for monitoring year 3. Wells 2 through 8 did not meet the success criteria. Wells 9 through 11 malfunctioned but do have data during the growing season. According to rainfall data for the area, in the months of March, April, June and August less than 2 inches of rain fell for each month during this time period. This may provide an explanation of why the majority of the wells placed in wetland areas did not meet the success criteria.

1.3.3 Vegetation

Planted vegetation will be monitored for five years in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-NCDMS Level 2 Protocol (Lee et al., 2006). To achieve vegetative success criteria, the average number of planted stems per acre must exceed or meet 320 stems/acre after the third year of monitoring, 288 stems/acre after four years, and 260 stems/acre after the fifth year of project monitoring. The monitoring year 3 stem counts are located in Tables 7 and 9 in Appendix C. Currently, plots 3,4,6,7, and 9 are meeting the interim measure of success. However, when including volunteer stems, plots 1, 5 and 8 exceed the interim stem count. Plot 2 did not meet the interim requirement even with volunteers included. Vegetation throughout the reach appears to be growing at acceptable rates. Carolina Silvics completed a supplemental planting effort in the 2015 - 2016 dormant season throughout the project site. In February 2016, Carolina Silvics replanted 1,300 stems in areas where stem densities were still not meeting the vegetative success criteria. These stems were as follows:

Riparian Areas: 300 Betula nigra, 200 Nyssa sylvatica, 200 Quercus coccinea, 150 Quercus micahauxii, 150 Quercus nigra, and 200 Quercus rubra. Wetland Areas: 50 Quercus michauxii and 50 Quercus nigra.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting documentation formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on DMS's website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

1.4 Project History, Contacts, and Attribute Data

The UT to Clarke Creek Stream and Wetland Restoration site was designed by JJG, North State Environmental constructed the site, and it will be monitored by SEPI Engineering & Construction. Tables 2, 3, and 4 in Appendix A provide detailed information regarding the Project Activity and Reporting History, Project Contacts, and Project Baseline Information and Attributes.

1.4.1 Construction Deviations

The as-built plan sheets/record drawings depict several engineered instream structures that were not located during baseline monitoring. It was determined the structures were not installed due to constraints that arose during construction, and the record drawings were not updated with that information.

2.0 METHODOLOGY

The following methods were utilized during the year 3 monitoring for data collection and postprocessing:

- Geomorphic topographic data collections were performed in the field using a survey grade GPS such that each survey point has three-dimensional coordinates, and is georeferenced (NAD83-State Plane Feet FIPS3200).
- Longitudinal stationing was developed using the as-built survey thalweg as a baseline.
- The Modified-Wolman pebble count particle size distribution protocol was utilized.
- The CVS Level 2 methodology was utilized for the vegetation plot data collection.

3.0 **REFERENCES**

- Jordan, Jones, and Goulding, Inc. <u>Mitigation Plan: UT Clarke Creek Stream and Wetland</u> <u>Restoration</u>, 2011.
- Mactec Engineering and Consulting, Inc. November 30, 2004. Watershed Management Plan and Recommendations, Lower Yadkin/Upper Rocky River Basin, Local Watershed Planning (Phase II), Cabarrus, Iredell, Rowan and Mecklenburg Counties, North Carolina. Prepared for North Carolina Ecosystem Enhancement Program.

NCDWQ. 2008B. Yadkin – Pee Dee River Basin Plan. 553 pages.

- NC Ecosystem Enhancement Program. <u>As-built Baseline Monitoring Report Format, Data</u> <u>Requirements, and Content Guidance</u>, 2014.
- Radford, Albert. 1968. *Manual of Vascular Flora of the Carolinas*. The University of North Carolina Press, Chapel Hill. 596 p.
- Rosgen, D L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.
- U. S. Army Corps of Engineers. 1987. *Wetland Delineation Manual* (Technical Report Y-87-1), Washington, DC.
- U. S. Army Corps of Engineers. 2003. *Stream Mitigation Guidelines*. USACOE, USEPA, NCWRC, NCDENR-DWQ.

Appendix A Background Tables

	Table 1a. Project Components UT Clarke Creek/DMS Project #92500										
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing	Mitigation Ratio	Mitigation Units	BMP Elements	Comment		
UT Clarke Creek	1507 lf	E1	P 2/3	1507 lf	00+00 - 15+87	1.5:1	1004.7		Creating bankfull bench, regrading bank slopes, installing structures, planting native vegetation		
UT1	723 lf	E1	P 2/3	741 lf	00+00 – 07+48, 07+65 – 07+78	1.5:1	494.0		Creating bankfull bench, regrading bank slopes, installing structures, planting native vegetation		
UT1	17 lf	E1	P 2/3	17 lf	07+48 – 07+65	3:1	5.7		Creating bankfull bench, regrading bank slopes, installing structures, planting native vegetation in sewer easement		
UT2	308 lf	E2	P 4	308 lf	04+22 - 05+99, 07+16 - 08+47	2.5:1	123.2		Planting of native vegetation, removal of invasive species		
UT3	100 lf	E1	P 2/3	84 lf	00+00 - 00+56, 00+72 - 01+03	1.5:1	56.0		Creating bankfull bench, regrading bank slopes, installing structures, planting native vegetation		
UT3	16 lf	E1	P 2/3	16 lf	00+56 - 00+72	3:1	5.3		Creating bankfull bench, regrading bank slopes, installing structures, planting native vegetation in sewer easement		
UT4	373 lf	E1	P 2/3	363 lf	01+92 – 05+65	1.5:1	242		Creating bankfull bench, regrading bank slopes, installing structures, planting native vegetation		
UT5	119 lf	E1	P 2/3	119 lf	03+56 – 04+75	1.5:1	79.3		Creating bankfull bench, regrading bank slopes, installing structures, planting native vegetation		
UT6*	1464 lf	Р	-	1051 lf	00+00 - 14+64	5:1	210.2		Designated as Preservation		
Wetland A**	0.085 ac	R		0.0*		0	0		Restoring aerial extent of riparian wetland adjacent to stream		
Wetland B	0.134 ac	Р		0.134 ac		5:1	0.027		Designated as Preservation		
Weltand C	0.057 ac	E		0.057 ac		2:1	0.029		Includes improving hydrology and vegetation to enhance the riparian wetland adjacent to stream		
Wetland D	0.070 ac	R		1.020 ac		1:1	1.02		Restoring aerial extent of riparian wetland adjacent to stream		
Wetland E	0.109 ac	E		0.109 ac		2:1	0.055		Includes improving hydrology and vegetation to enhance the riparian wetland adjacent to stream		
Wetland E	0.109 ac	С		0.137 ac		3:1	0.046		Includes improving hydrology and vegetation to enhance the riparian wetland adjacent to stream		
	1			·		· · · ·			s resulting in 413 LE difference		

*DMS cannot receive mitigation credits for streams with conservation easements on only one side of a project stream. A portion of UT6 is inelligible for credits resulting in 413 LF difference between existing and final credit length.
**One segment of WL A will be incorporated into the enhancement of UT2. The remainder of WL A will be incorporated into the restoration of WL D

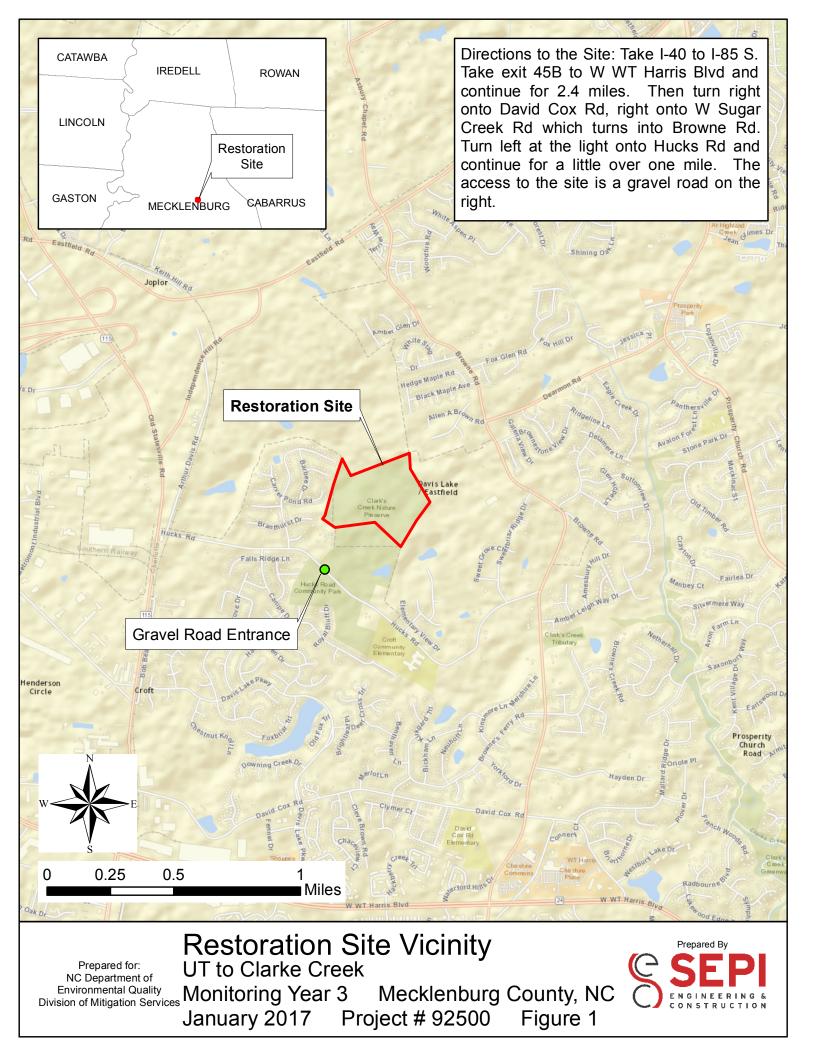
Table 1b. Component SummationsUT Clarke Creek/DMS Project #92500								
Restoration Level	Stream (If)	Riparian Wetland (Ac)		Non- Ripar (Ac)	Upland (Ac)	Buffer (Ac)	BMP	
		Riverine	Non- Riverine					
Restoration		1.02						
Enhancement		0.166						
Enhancement I	2,847							
Enhancement II	308							
Creation		0.137						
Preservation	1,051	0.134						
HQ Preservation								
		1.457	0					
Totals (Feet/Acres)	4,206	1.4	57					
MU Totals	2,220	1.1	76					

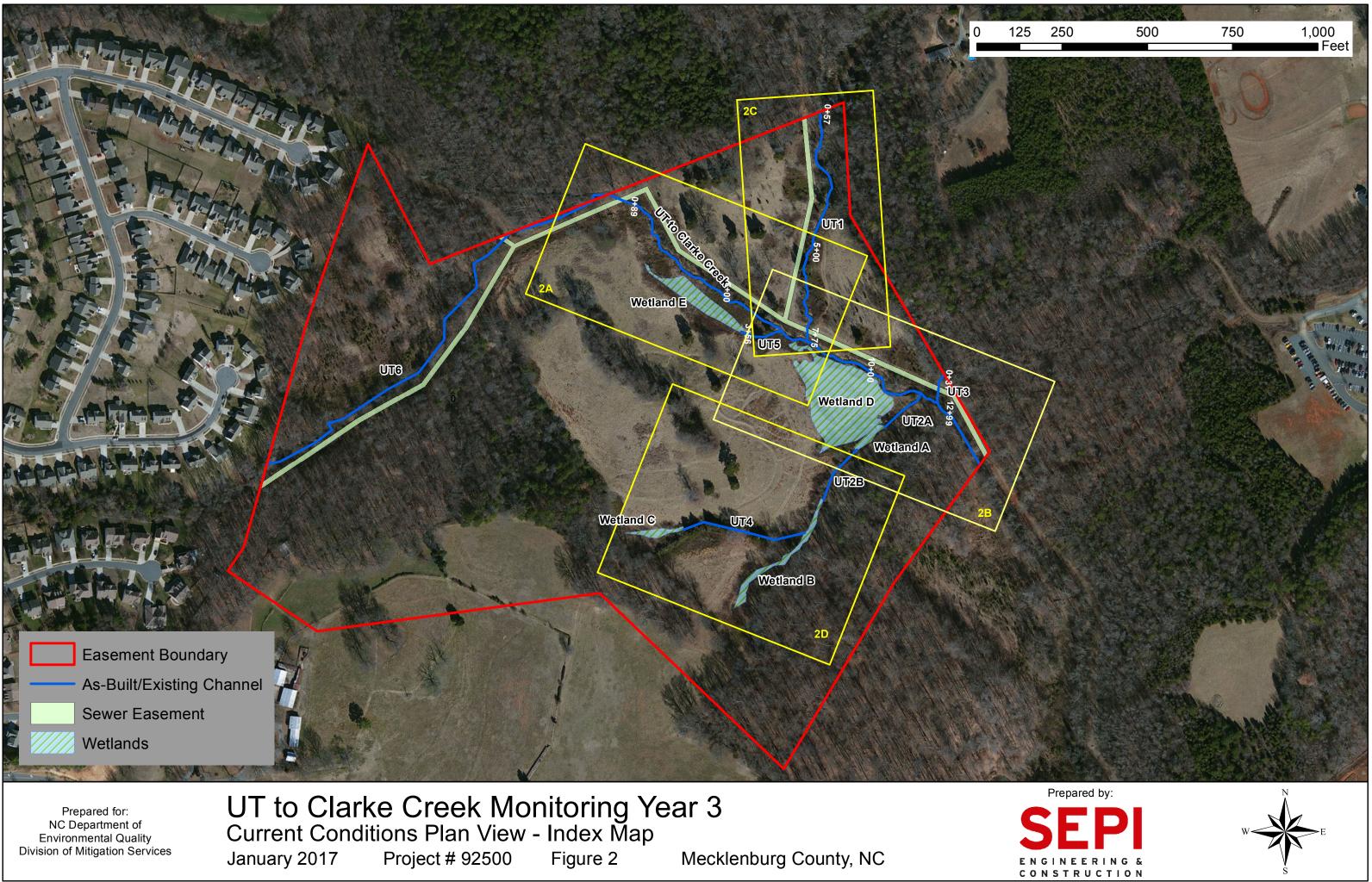
Non-Applicable

Table 2. Project Activity and Reporting History UT Clarke Creek/DMS Project #92500

Elapsed Time Since grading complete:	3 ye
Elapsed Time Since planting complete:	2 уе
Number of reporting Years:	

3 years 4 months 2 year 9 months


3


Activity or Deliverable	Data Collection Complete	Completion or Delivery
Institution Date	NA	Sept-2008
404 permit date	NA	Jan-2012
Restoration Plan	Sept-2010	Feb-2011
Final Design – Construction Plans	NA	July-2012
Construction	NA	July-2013
Containerized, bare root and B&B plantings	NA	Feb-2014
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	Mar-2014	June-2014
Year 1 Monitoring	Sept-2014	Nov-2014
Year 2 Monitoring	Sept-Oct-2015	Jan-2016
Year 3 Monitoring	Oct - 2016	Dec - 2016
Year 4 Monitoring		
Year 5 Monitoring		

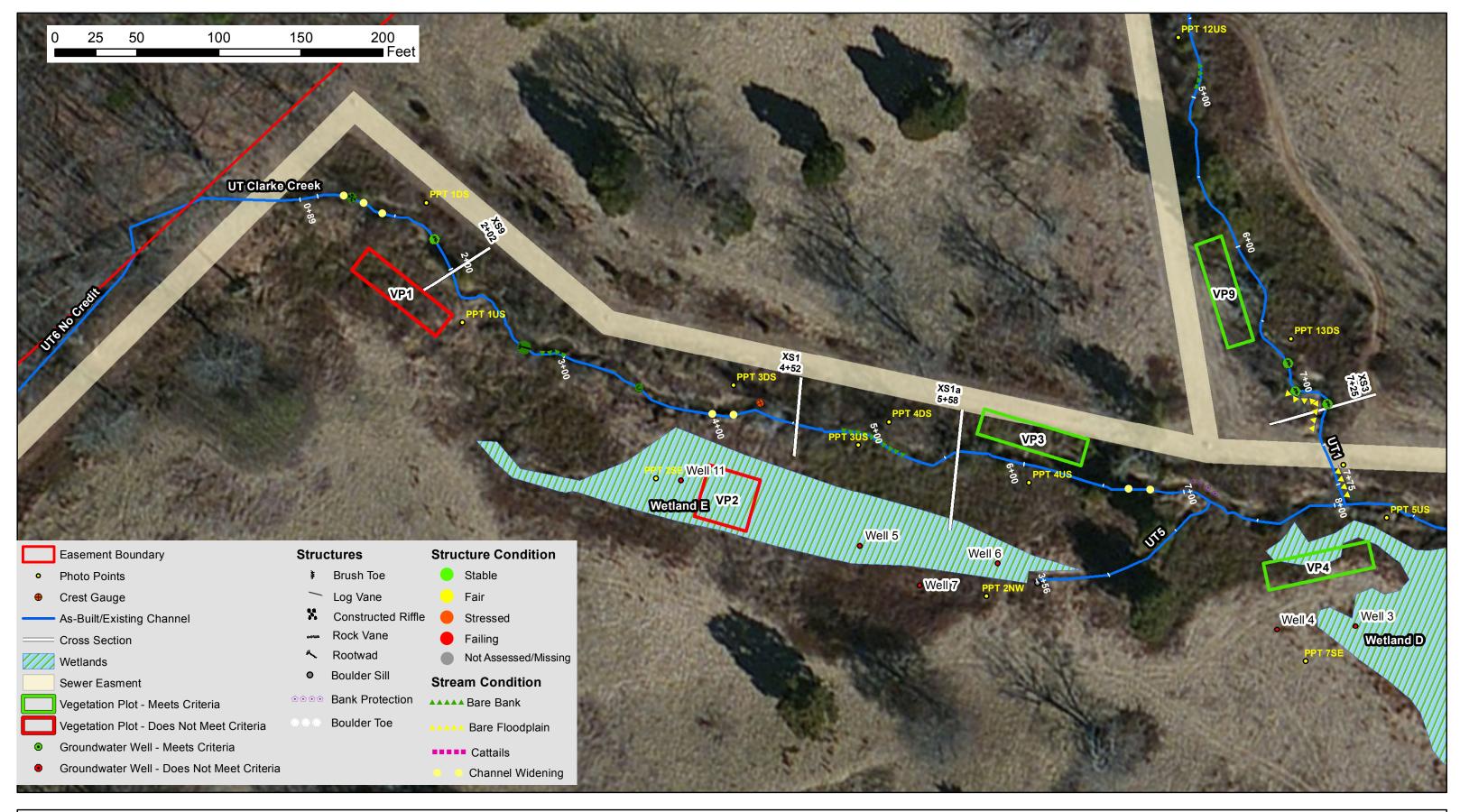
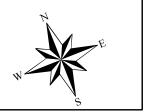
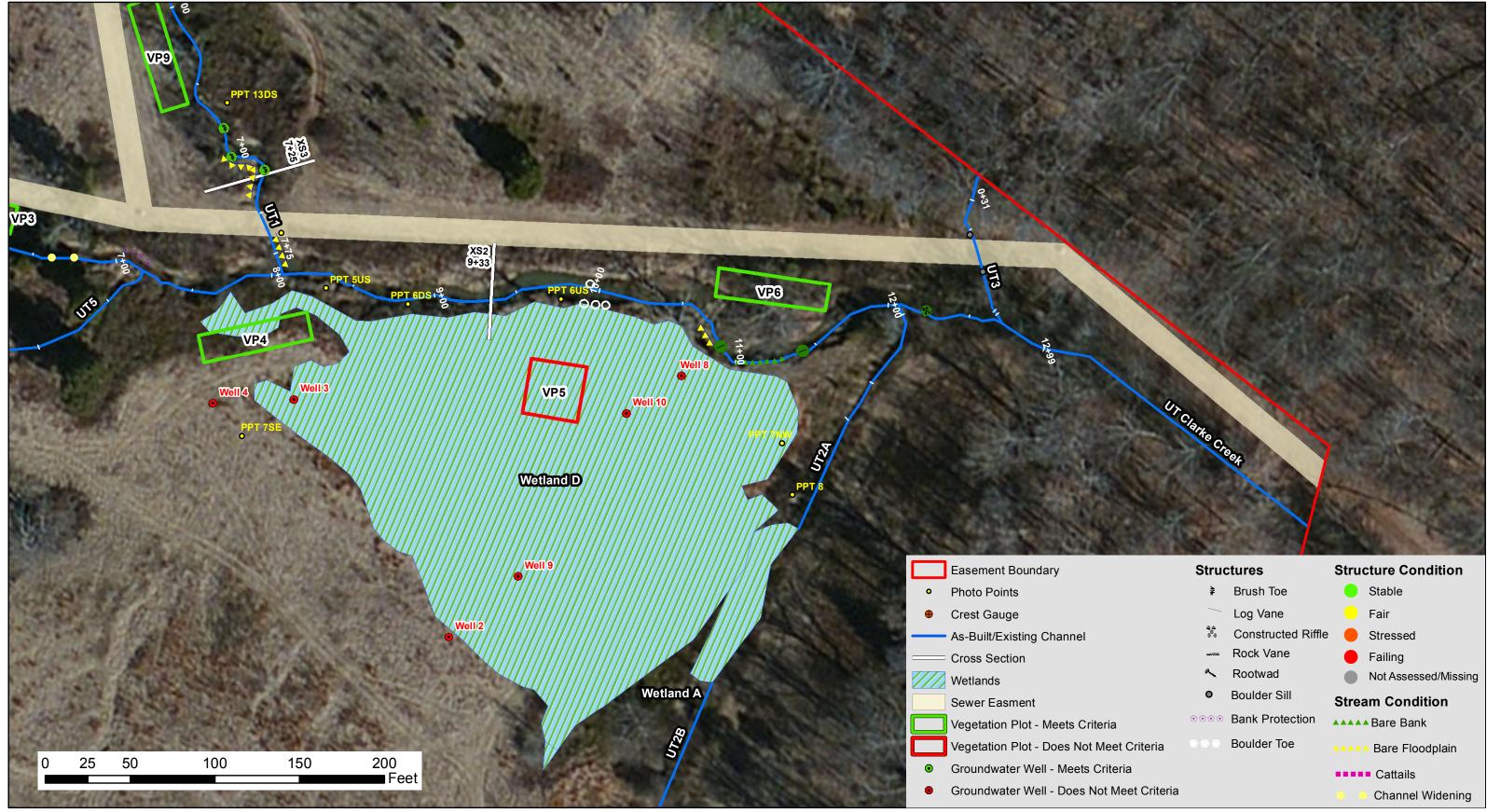

	Table 3. Project Contacts Table to Clarke Creek/DMS Project #92500						
Designer Jordan, Jones, and Goulding, Inc.							
Designer							
Primary project design POC	309 E. Morehead Street, Suite 110, Charlotte, NC 28202 Matthew M. Clabaugh, PE						
Construction Contractor	North State Environmental						
	2889 Lowery Street, Winston-Salem, NC 27101						
Construction contractor POC	Michael Anderson, (336) 245-1253						
Survey Contractor	NorthState Environmental						
	2889 Lowery Street, Winston-Salem, NC 27101						
Survey contractor POC	David Keith Alley, PLS						
Planting Contractor	Carolina Silvics						
	908 Indian Trail Road, Edenton, NC 27932						
Planting contractor POC							
Seeding Contractor	Canady's Landscaping & Erosion						
	256 Fairview Acres Road, Lexington, NC 27295						
Contractor point of contact	Craig Canady, (336) 236-1182						
Seed Mix Sources							
Nursery Stock Suppliers							
Monitoring Performers	SEPI Engineering & Construction						
	1025 Wade Avenue, Raleigh, NC 27605						
Stream Monitoring POC	Philip Beach, PWS (919) 789-9977						
Vegetation Monitoring POC	Jason Hales, PWS (919) 789-9977						
Wetland Monitoring POC	Philip Beach, PWS (919) 789-9977						

Table 4. Project	Attribute Table				
UT to Clarke Creek/D					
Project County		lenburg			
Physiographic Region					
Ecoregion					
Project River Basin	Yadkin	-Pee Dee			
USGS HUC for Project (14 digit)	030401	05010040			
NCDWQ Sub-basin for Project	03-	07-11			
Within extent of EEP Watershed Plan?	Upper Roc	ky River LWP			
WRC Hab Class (Warm, Cool, Cold)	W	/arm			
% of project easement fenced or demarcated	10	00%			
Beaver activity observed during design phase?		/es			
Restoration Compone	ent Attribute Table				
	UT Clarke Creek	UT1			
Drainage area	1.08	0.46			
Stream order	2	1			
Restored length (feet)	1507	758			
Perennial or Intermittent	Perennial	Perennial			
Watershed type (Rural, Urban, Developing etc.)	R	ural			
Watershed LULC Distribution (e.g.)					
Residential	94	.60%			
Ag-Row Crop		-			
Ag-Livestock		-			
Forested		-			
Etc.	5.	40%			
Watershed impervious cover (%)	16	.50%			
NCDWQ AU/Index number	13-	17-5-2			
NCDWQ classification		С			
303d listed?		No			
Upstream of a 303d listed segment?		/es			
Reasons for 303d listing or stressor	5, Ecological/b	iological integrity			
Total acreage of easement	5	7.2			
Total vegetated acreage within the easement		57.2			
Total planted acreage as part of the restoration		57.2			
Rosgen classification of pre-existing	E4	B4c B4c			
Rosgen classification of As-built		N/A			
Valley type	`	VIII			
Valley slope		-			
Valley side slope range (e.g. 2-3.%)		-			
Valley toe slope range (e.g. 2-3.%)		-			
Cowardin classification		N/A			
Trout waters designation		No			
Species of concern, endangered etc.? (Y/N)		No			
Dominant soil series and characteristics		eD, EnD			
Series	Monacan, Me	cklenburg, Enon			
Depth		-			
Clay%		-			
K		-			
Т		-			

Appendix B Visual Assessment Data

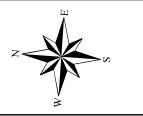




UT to Clarke Creek Monitoring Year 3 Current Conditions Plan View - UT Clarke Creek above Confluence January 2017 Project # 92500 Figure 2A Mecklenburg County, NC

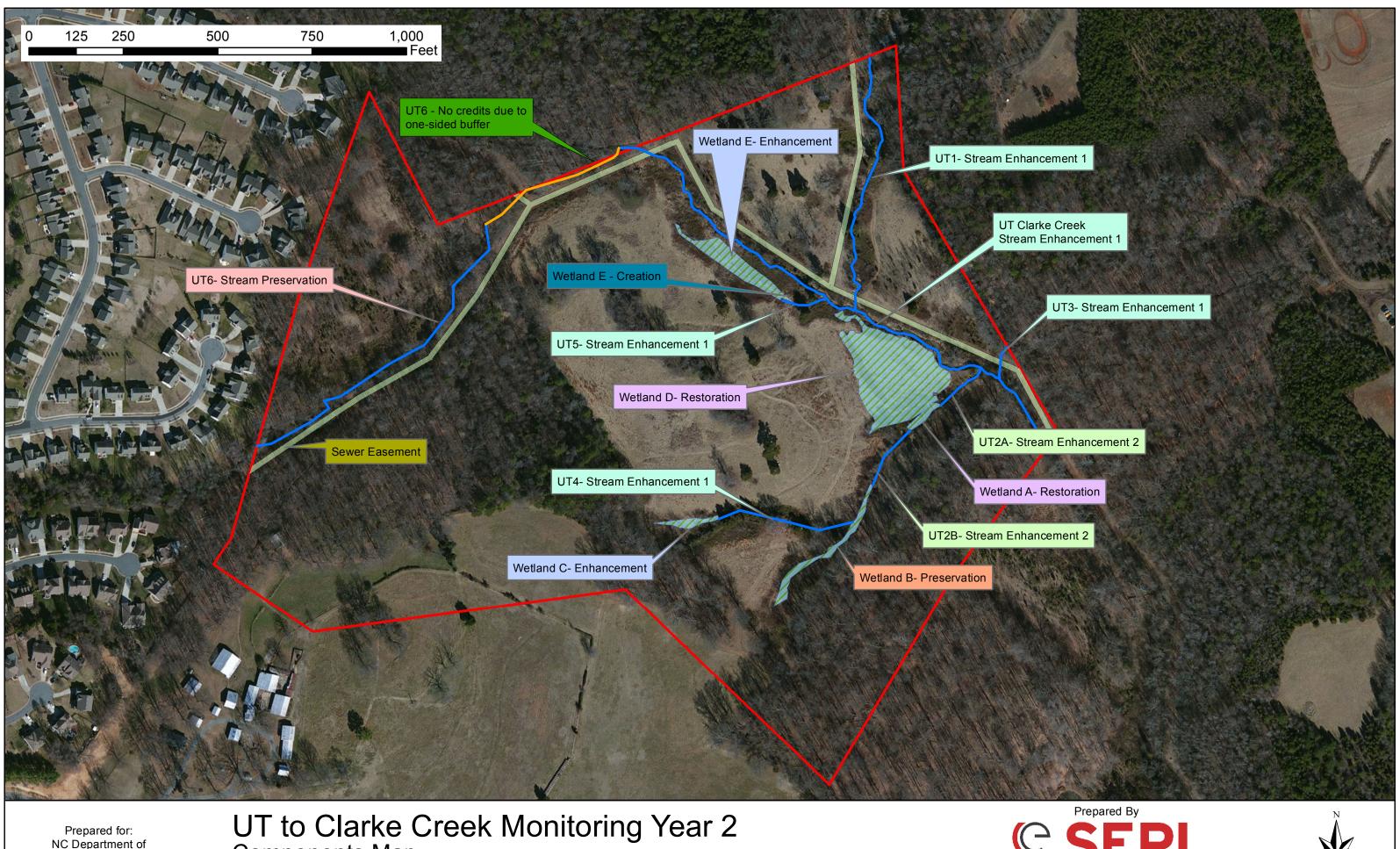
UT to Clarke Creek Monitoring Year 3 Current Conditions Plan View - UT Clarke Creek below Confluence January 2017 Project # 92500 Figure 2B Mecklenburg County, NC

	Struc	tures	Struc	cture Condition
	\$	Brush Toe		Stable
	-	Log Vane		Fair
	44 1 ¹ 4	Constructed Riffle		Stressed
	يتتنغب	Rock Vane		Failing
	*	Rootwad		Not Assessed/Missing
	•	Boulder Sill	Strea	am Condition
	$\odot \odot \odot \odot$	Bank Protection		Bare Bank
et Criteria		Boulder Toe		Bare Floodplain
eria				Cattails
leet Criteria				Channel Widening
Prepare	ed By			7
				ľ.



0	25	50	100	150	200 Feet					1000	1000			1.1.1.1
1		15						20	-25					
	8	A.		新闻								A	Surfi	AT LOS
		A.	3	Star St	2.18.2	14			3	1		100		1
	and a		1 AR	Contraction of the	disser-	a Marker	XS5		1.5			A-16.		1.190
5					100 00		XS5 2+66	100			28-1-1	the second	A.S.S.	A.
				XS4 1+26			PPT 11DS3	XS6 3+00 3+33				A SE		
		0+	-57		VP7	PPT 10DS		PPT 10US	UTT	XS8 4+14	E. U	Ser.	Sala al	
			57 1+0		- 00				PPT 12DS	VP8	1	and a	and a	ness .
		1	PPT 9DS		2+0			-	PPT 1	4+00	160	Marine.	and the second	-
	1				Real Providence			-					100	
		Mar 19		2000	-	and state	10000	TALAN	-		PPT-12	US 5+00		
					CONTRACTOR AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRI	1.000 PC 1	13530 DECE		and the second second				Contraction of the local division of the loc	6+00
38				Hallow					1.000			\sim	<u> </u>	6+00
E							12.0		-				~	
											154			
								1						VE
	asement E	Boundary		Struc	ctures	Structure	e Condition			A MARINE A				
	asement E noto Point			Struct *	Brush Toe	😑 Stab	ble			A AND A A				
Ph Cr	noto Point rest Gaug	ts e		, site	Brush Toe Log Vane	StabFair	le			A ANA A				
Ph Cr As	noto Point rest Gaug s-Built/Exi	ts e isting Channel		* _ X	Brush Toe Log Vane Constructed Riffle	StabFairStres	ssed							
Ph Cr As = Cr	noto Point rest Gaug s-Built/Exi ross Secti	ts e isting Channel		*	Brush Toe Log Vane Constructed Riffle Rock Vane	 Stab Fair Stres Failir 	ole ssed ng							
Ph Cr As Cr Xv	noto Point rest Gaug s-Built/Exi ross Secti etlands	ts e isting Channel ion		* - * *	Brush Toe Log Vane Constructed Riffle Rock Vane Rootwad	 Stab Fair Stres Failir Not A 	ole ssed ng Assessed/Missin							
Ph Cr As Cr Z Wa Se	noto Point rest Gaug s-Built/Exi ross Secti etlands ewer Easr	ts e isting Channel ion ment		* / * < 0	Brush Toe Log Vane Constructed Riffle Rock Vane Rootwad Boulder Sill	 Stab Fair Stres Failir Not A 	ole ssed ng Assessed/Missin Condition							
Ph Cr As Cr Z Wo Se Ve	noto Point rest Gaug s-Built/Exi ross Secti etlands ewer Easr egetation I	ts ie isting Channel ion ment Plot - Meets Crit		¥ / X 	Brush Toe Log Vane Constructed Riffle Rock Vane Rootwad Boulder Sill Bank Protection	 Stab Fair Stres Failir Not A Stream C Bare 	ole ssed ng Assessed/Missin Condition e Bank							
Ph Cr As Cr Vo Se Ve	noto Point rest Gaug s-Built/Exi ross Secti etlands ewer Easr egetation l	ts e isting Channel ion ment Plot - Meets Crit Plot - Does Not	Meet Criteria	* / * < 0	Brush Toe Log Vane Constructed Riffle Rock Vane Rootwad Boulder Sill	 Stab Fair Stres Failir Not A Stream C Bare 	ole ssed ng Assessed/Missin Condition							
Ph Cr As Cr Z Vu Se Ve Gr	noto Point rest Gaug s-Built/Exi ross Secti etlands ewer Easr egetation l roundwate	ts ie isting Channel ion ment Plot - Meets Crit	Meet Criteria Criteria	* / * / * * * * * * * * * * * * * * * *	Brush Toe Log Vane Constructed Riffle Rock Vane Rootwad Boulder Sill Bank Protection	 Stab Fair Stres Failir Not A Stream C Bare 	ole ssed ng Assessed/Missin Condition e Bank e Floodplain							

UT to Clarke Creek Monitoring Year 3 Current Conditions Plan View - UT 1 January 2017 Project # 92500 Figure 2C Mecklenburg County, NC



UT to Clarke Creek Monitoring Year 3 Current Conditions Plan View - UT 4 January 2017 Project # 92500 Figure 2D Meck

Mecklenburg County, NC

Components Map January 2017 Project # 92500

Figure 3

Mecklenburg County, NC

Table 5a Visual Stream Morphology Stability Assessment Reach ID UT to Clarke Creek Assessed Length 1507

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended		Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	10	10			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth <u>></u> 1.6)	9	10			90%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	10	10			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	10	10			100%			
		2. Thalweg centering at downstream of meander (Glide)	10	10			100%			
		•					•			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			1	39	99%	1	39	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	1	39	99%	1	39	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	7	7			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	7	8			88%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 5bVisual Stream Morphology Stability AssessmentReach IDUT1Assessed Length758

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	1. <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	5	5			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	4	6			67%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	6	6			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	6	6			100%			
		2. Thalweg centering at downstream of meander (Glide)	6	6			100%			
								<u> </u>		
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	52	97%	0	0	97%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	2	52	97%	0	0	97%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	7	7			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	7	8			88%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 6	Vegetation Condition Assessment
---------	---------------------------------

Areas or points (if too small to render as polygons at map scale).

Planted Acreage ¹	13					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Plante Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Pattern and Color	7	0.01	0.1%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Pattern and Color	0	0.00	0.0%
			Total	7	0.01	0.1%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Pattern and Color	0	0.00	0.0%
		Cu	mulative Total	7	0.01	0.1%
Easement Acreage ²	57.2					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	Pattern and Color	0	0.00	0.0%

5. Easement Encroachment Areas³

Pattern and

Color

none

0

0.00

0.0%

Photo Station 1 Downstream-XS9 (MY3-10/21/2016)

Photo Station 1 Upstream-XS9 (MY3-10/21/2016)

Photo Station 2 Northeast-Wetland E (MY3-12/02/2016)

Photo Station 2 Southeast-Wetland E (MY3 - 10/20/2016)

Photo Station 3 Downstream-XS1 (MY3-11/09/2016)

Photo Station 3 Upstream-XS1 (MY3 - 11/09/2016)

Photo Station 4 Downstream-XS1A (MY3-10/20/2016)

Photo Station 4 Upstream-XS1A (MY3-10/21/2016)

Photo Station 5 Upstream-Confluence (MY3 – 12/02/2016)

Photo Station 6 Downstream-XS2 (MY3 - 10/20/2016)

Photo Station 6 Upstream-XS2 (MY3-10/20/2016)

Photo Station 7 Northwest- Wetland D (MY3 – 10/20/2016)

Photo Station 7 Southeast-Wetland D (MY3 – 10/20/2016)

Photo Station 8 Downstream-UT2 (MY3 - 10/20/2016)

Photo Station 8 South-Wetland A (MY3-10/20/2016)

Photo Station 9 Downstream-XS4 (MY3 - 10/20/2016)

Photo Station 9 Upstream-XS4 (MY3 - 10/20/2016)

Photo Station 10 Downstream-XS5 (MY3 - 10/20/2016)

Photo Station 10 Upstream-XS5 (MY3 – 10/20/2016)

Photo Station 11 Downstream-XS6 (MY3 - 10/21/2016)

Photo Station 11 Upstream-XS6 (MY3 - 10/21/2016)

Photo Station 12 Downstream-XS8 (MY3 - 10/20/2016)

Photo Station 12 Upstream-XS8 (MY3 – 10/20/2016)

Photo Station 13 Downstream-XS3 (MY3 – 10/21/2016)

Photo Station 13 Upstream-XS3 (MY3 – 10/21/2016)

Photo Station 14 North-Wetland B (MY3 – 12/02/2016)

Photo Station 14 South-Wetland B (MY3 – 12/02/2016)

Vegetation Plot 1 – 5m x 20m (MY2 – 10/20/2016)

Vegetation Plot 2 – 10m x 10m (MY2 – 12/2/2016)

Vegetation Plot 3 – 5m x 20m (MY2 – 10/20/2016)

Vegetation Plot $4 - 5m \ge 20m (MY2 - 10/20/2016)$

Vegetation Plot 5 – 5m x 20m (MY2 – 12/2/2016)

Vegetation Plot 6 – 5m x 20m (MY2 – 12/2/2016)

Vegetation Plot 7 – 10m x 10m (MY2 – 12/2/2016)

Vegetation Plot $8 - 5m \ge 20m (MY2 - 12/2/2016)$

UT Clark Creek DMS Project #92500 January 2017

Vegetation Plot 9 – 5m x 20m (MY2 – 12/2/2016)

Appendix C Vegetation Plot Data

Table 7. Vege	tation Plot Mit	igation Success Sumary
UT to Cla	arke Creek / D	MS Project #92500
	Year 3 d	of 5
Plot #	Stems/Acre	Success Criteria Met?
1	121.4	No
2	121.4	No
3	323.7	Yes
4	323.7	Yes
5	283.3	No
6	485.6	Yes
7	445.2	Yes
8	80.9	No
9	404.7	Yes

	Table 8 - CVS Vegetation Metadata
	UT Clarke Creek / DMS Project #92500
Report Prepared By	Philip Beach
Date Prepared	11/29/2016 14:33
database name	UTClarkeCr 92500 MY3 2016 CVS Database.mdb
database location	G:\Environmental\NCEEP Ut Clark Creek WMS\MY03\AnnualReport\UTClarkeCr_92500_MY3_2016_DRAFT\Support Files\3 - Vegetation Plot Data
computer name	W69
file size	66662400
DESCRIPTION OF WORKSH	IEETS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	92500
project Name	UT Clarke Creek
Description	Stream and Wetland Restoration
River Basin	Yadkin-Pee Dee
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	9

Table 9 - CVS Planted and Total Stem Counts (Stems and Species by Plot with Annual Means DMS Project Code 92500. Project Name: UT Clarke Creek

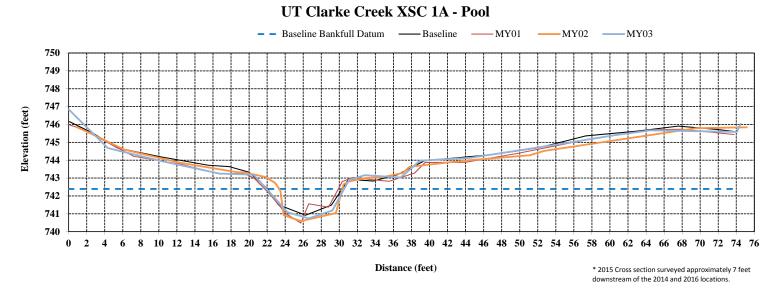
													Curre	nt Plo	t Data	(MY3	2016)													А	nnual Me	ans			
			925	00-01-	0001	9250	00-01-000)2 9	92500-01	L-0003	925	00-01-	0004	9250	0-01-0	005	92500-	01-0006	92	500-01-0	007	92500-01-000	8	92500-0	L-0009	MY3 (2016)	MY	2 (20	15)	MY1	(2014)		MYO (2014)	
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all T	Pno	oLS P-al	11 т	PnoLS	P-all	т	PnoLS	P-all :	r	PnoLS P-a	all T	PnoL	S P-all	г	PnoLS P-all T	Pn	IOLS P-al	11 т	PnoLS P-a	all T	PnoLS	P-all	т	PnoLS P-	all T	PnoLS	P-all T	
Alnus serrulata	hazel alder	Shrub									1						1	1	1							1	1 2	2 1	1	11			3		1
Amelanchier arborea	common serviceber	ryTree									1	. 1	1	1	1	1								1	1 :	3	3 3	3 3	3	3	1	1	2	L 1	1
Asimina triloba	pawpaw	Tree																															1		
Baccharis halimifolia	a eastern baccharis	Shrub																															1		
Betula nigra	river birch	Tree	1	1	1	1	1	1	3	3	3 1	. 1	1				4	4	4	3 3	3	1 1	1	3	3	17	17 17	7 20	20	21	6	6	6	8 8	8
Carpinus caroliniana	American hornbeam	Tree																													2	2	2	2 2	2
Carya glabra	pignut hickory	Tree																																L 1	1
Chionanthus virginicu	us white fringetree	Shrub Tree							1	1	1															1	1 1	L 3	1.1	3					
Cornus amomum	silky dogwood	Shrub								2	2						1	1	1						2	1	5 5	5 1	ш,	6		3	3	6	6
Diospyros virginiana	common persimmon	Tree																												2			3		
Fraxinus pennsylvanic	ca green ash	Tree									4	4 4	4			1	2	2	5	1 1	3		2	1	1	8	8 18	3 15	15	18	11	11 1	2 1	5 15	15
Ilex verticillata	common winterberry	y Shrub																																L 1	1
Juglans	walnut	Tree																																	1
Juglans nigra	black walnut	Tree																												1					
Liquidambar styracifl	lussweetgum	Tree			1																		1				4	2		10			7		4
Liriodendron tulipife	eratuliptree	Tree																										3	3	3	5	5	5 1	2 12	12
Nyssa sylvatica	blackgum	Tree																		2 2	2			1	1	3	3 3	3 3	(r)	3					
Pinus taeda	loblolly pine	Tree									1										4		5				10)		9					
Platanus occidentalis	American sycamore	Tree							2	2	2						1	1	1	2 2	2	1 1	1	2	2	8	8 8	3 15	15	15	4	4	4	7 7	7
Populus deltoides	eastern cottonwood	d Tree			1								1			1					3						9	9		21		1	3		
Quercus falcata	southern red oak	Tree	1	1	1	2	2	2			2	2 2	2	2	2	2	2	2	2	2 2	2					11	11 11	L 19	19	19	13	13 1	3 2	5 26	26
Quercus michauxii	swamp chestnut oal	k Tree	1	1	1				2	2	2			2	2	2							2	1	1	6	6 8	3 11	11	11					
Quercus nigra	water oak	Tree															1	1	1							1	1 1	L 3	1.1	3	4	4	4	3 8	8
Quercus phellos	willow oak	Tree																		1 1	1					1	1 1	L 2	2	2	1	1	1		
Quercus rubra	northern red oak	Tree												1	1	1			1				4	1	1	2	2 7	7 3	(1)	3	1	1	1	L 1	1
Salix nigra	black willow	Tree			30			4		4	4		3	1	1	8			1				2		1	1	5 63	3	4	120		2 7	3	5	98
Sambucus canadensis	Common Elderberry	Shrub																												2					
		Stem count	3	3	35	3	3	7	8 1	14 1	6 8	8 8	12	7	7	16	12	12	.7 1	1 11	20	2 2	18	10	12 28	64	72 169	9 102	110	286	48	53 15	4 8	93	192
		size (ares)		1			1		1			1			1			1		1		1		1	-		9		9		-	9		9	
		size (ACRES)		0.02			0.02		0.0	2		0.02			0.02		0.	.02		0.02		0.02		0.0	2	0.	22		0.22		0	.22		0.22	
		Species count	3	3	6	2	2	3	4	б	8 4	4	6	5	5	7	7	7	9	6 6	8	2 2	8	7	8 10	14	14 17	7 14	15	21	10	12 1	8 1	L 13	16
	2	Stems per ACRE	121.4	121.4	1416	121.4	121.4 28	3.3 32	3.7 566.	.6 647.	5 323.7	323.7	485.6	283.3	283.3	647.5	485.6 48	5.6 6	88 445.	2 445.2	809.4	80.94 80.94 72	8.4 40	4.7 485	.6 113	287.8 32	3.7 759.9	458.6	494.6	1286	215.8 2	38.3 692.	5 368.713	418.1752 8	363.3294

Appendix D Stream Survey Data

Station	Elevation
0	747.15
0.17	746.34
6.1	745.65
8.98	745.36
18.34	744.82
23.07	744.69
25.18	744.3
25.9	744.08
27.14	743.29
28.62	743.18
31.88	743.53
32.79	744.9
38.02	745.35
44.9	745.83
48.37	746.18
48.39	746.9

Reach	UT to Clarke Creek
River Basin	Yadkin/Pee Dee
Cross Section ID	XSC-1, Riffle, 4+52
Drainage Area (Sq Mi)	1.08
Date	10/21/2016
Observers	P. Beach, E. Webster

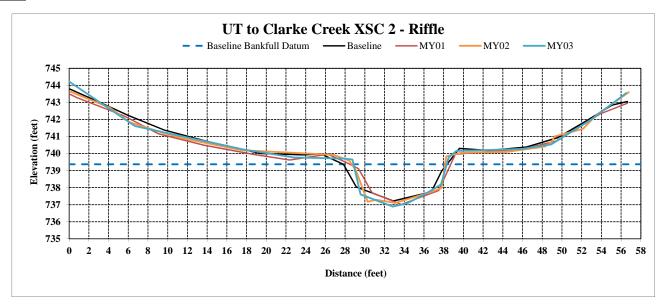
SUMMARY DATA	
Baseline Bankfull Datum, ft	744.21
Bankfull Cross Sectional Area, ft ²	4.35
Bankfull Width, ft	6.89
Max Depth at Bankfull, ft	1.03
Mean Depth at Bankfull, ft	0.63
Width/Depth Ratio	10.90
Flood Prone Width, ft	21.00
Flood Prone Area Elevation	745.24
Entrenchment Ratio	3.05
Bank Height Ratio	1.09



Station	Elevation
0	746.85
4.34	744.68
10.4	743.94
16.75	743.25
20.47	743.19
21.08	742.88
22.36	742.15
24.24	741.09
26.61	740.74
29.24	741.19
31.07	742.89
32.81	743.16
36.8	743.03
38.91	743.96
40.07	744.01
44.51	744.13
53.11	744.8
60.69	745.41
64.5	745.67
74.08	745.58
74.48	746.04

Reach	UT to Clarke Creek
River Basin	Yadkin/Pee Dee
Cross Section ID	XSC-1A, Pool, 5+58
Drainage Area (Sq Mi)	1.08
Date	10/21/2016
Observers	P. Beach, E. Webster

Baseline Bankfull Datum, ft	742.39
Bankfull Cross Sectional Area, ft ²	7.92
Bankfull Width, ft	8.71
Max Depth at Bankfull, ft	1.65
Mean Depth at Bankfull, ft	0.91
Width/Depth Ratio	9.58
Flood Prone Width, ft	29.00
Flood Prone Area Elevation	744.04
Entrenchment Ratio	3.33
Bank Height Ratio	1.47



Station	Elevation	
0	744.22	
6.67	741.61	
17.56	740.25	
22.77	739.77	
27.92	739.7	
28.74	739.65	
29.57	737.6	
32.85	736.89	
34.31	737.08	
36.02	737.6	
37.73	738.18	
38.51	739.77	
39.28	740.15	
41.1	740.18	
45.94	740.27	
48.89	740.53	
52.82	741.93	
56.53	743.55	

Reach	UT to Clarke Creek
River Basin	Yadkin/Pee Dee
Cross Section ID	XSC-2, Riffle, 9+33
Drainage Area (Sq Mi)	1.08
Date	10/21/2016
Observers	P. Beach, E. Webster
SUMMARY DATA	
Baseline Bankfull Datum, ft	739.37
Bankfull Cross Sectional Area, ft ²	20.16
Bankfull Width, ft	9.77
Max Depth at Bankfull, ft	2.48
Mean Depth at Bankfull, ft	2.06
Width/Depth Ratio	4.73
Flood Prone Width, ft	47.25
Flood Prone Area Elevation	741.85
Entrenchment Ratio	4.84
Bank Height Ratio	1.09

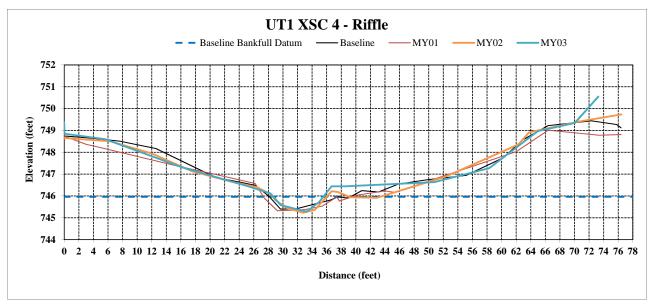
Station	Elevation
0	745.22
0.35	744.51
4.7	743.06
17.3	741.86
24.62	741.72
25.26	741.12
26.67	740.41
30.49	738.52
34.11	739.03
35.37	741.06
37.76	741.50
52.71	741.85
59.35	742.42
67.41	744.00
67.7	744.75

Reach	UT1
River Basin	Yadkin/Pee Dee
Cross Section ID	XSC-3, Pool, 7+25
Drainage Area (Sq Mi)	0.46
Date	10/21/2016
Observers	P. Beach, E. Webster

Deseline Denkfull Detum ft	741.07
Baseline Bankfull Datum, ft	/41.0/
Bankfull Cross Sectional Area, ft ²	19.48
Bankfull Width, ft	10.11
Max Depth at Bankfull, ft	2.55
Mean Depth at Bankfull, ft	1.93
Width/Depth Ratio	5.25
Flood Prone Width, ft	62.00
Flood Prone Area Elevation	743.62
Entrenchment Ratio	6.13
Bank Height Ratio	1.17

UTI XSC 3 - Pool - Baseline Bankfull Datum Baseline MY01 MY02 MY03 - Baseline Bankfull Datum Baseline MY01 MY02 MY03 - MY01 - MY02 MY03 - MY03 - MY03 - MY04 - MY04 - MY04 - MY04 - MY04 - MY04 - MY05 -

Station	Elevation
0	749.37
0.05	748.85
5.6	748.6
16.16	747.31
25.13	746.45
28.26	746.12
29.7	745.58
33.23	745.28
34.93	745.71
36.67	746.44
38.52	746.44
50.74	746.63
58.3	747.27
64.99	748.97
70.04	749.34
73.27	750.55

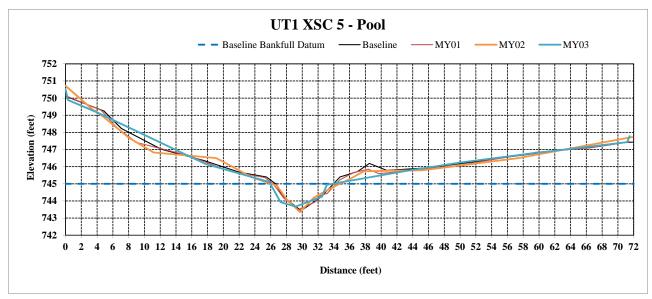

Reach	UT1
River Basin	Yadkin/Pee Dee
Cross Section ID	XSC-4, Riffle, 1+26
Drainage Area (Sq Mi)	0.46
Date	10/21/2016
Observers	P. Beach, E. Webster

Baseline Bankfull Datum, ft	745.96
Bankfull Cross Sectional Area, ft ²	4.24
Bankfull Width, ft	8.41
Max Depth at Bankfull, ft	0.68
Mean Depth at Bankfull, ft	0.50
Width/Depth Ratio	16.67
Flood Prone Width, ft	26
Flood Prone Area Elevation	746.64
Entrenchment Ratio	3.09
Bank Height Ratio	1.99

Stream Type B4c

Sta. 1+26 Looking Downstream

Station	Elevation
0	750.53
0.31	749.89
3.89	749.19
17.72	746.16
25.8	745.11
26.44	744.6
27.25	743.93
29.18	743.67
32.52	744.26
33.11	744.94
43.66	745.79
50.14	746.25
58.65	746.75
71.17	747.43
71.48	747.78

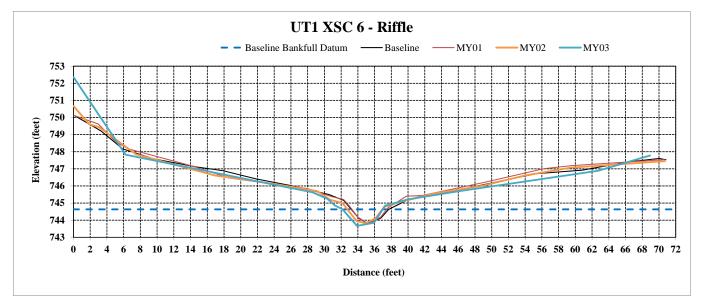

Reach	UT1
River Basin	Yadkin/Pee Dee
Cross Section ID	XSC-5, Pool, 2+66
Drainage Area (Sq Mi)	0.46
Date	10/21/2016
Observers	P. Beach, E. Webster

SUMMARY DATA	
Baseline Bankfull Datum, ft	745.90
Bankfull Cross Sectional Area, ft ²	6.20
Bankfull Width, ft	7.31
Max Depth at Bankfull, ft	1.33
Mean Depth at Bankfull, ft	0.85
Width/Depth Ratio	8.61
Flood Prone Width, ft	34
Flood Prone Area Elevation	746.33
Entrenchment Ratio	4.65
Bank Height Ratio	1.59

Stream Type B4c

Sta. 2+66 Looking Downstream

Station	Elevation
0	752.36
6.23	747.83
22.92	746.18
28.58	745.63
30.37	745.25
31.26	744.86
32.16	744.64
33.9	743.67
35.93	743.85
37.26	744.85
40.04	745.22
46.18	745.7
62.73	746.89
68.93	747.78


Reach	UT1
River Basin	Yadkin/Pee Dee
Cross Section ID	XSC-6, Riffle, 3+33
Drainage Area (Sq Mi)	0.46
Date	10/21/2016
Observers	P. Beach, E. Webster

SUMMARY DATA	
Baseline Bankfull Datum, ft	744.63
Bankfull Cross Sectional Area, ft ²	4.23
Bankfull Width, ft	6
Max Depth at Bankfull, ft	0.96
Mean Depth at Bankfull, ft	0.71
Width/Depth Ratio	8.51
Flood Prone Width, ft	16
Flood Prone Area Elevation	745.59
Entrenchment Ratio	2.67
Bank Height Ratio	1.61

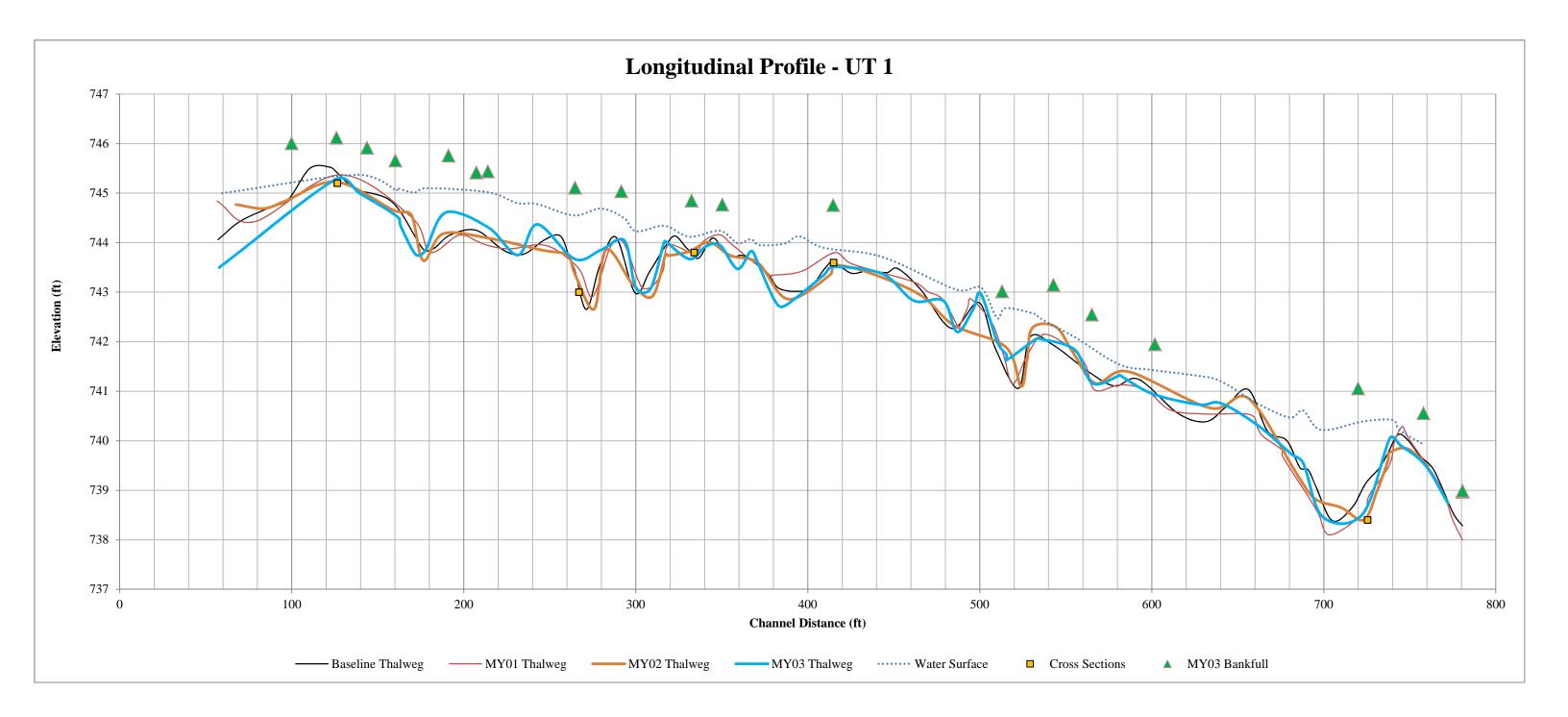
Stream Type B4c

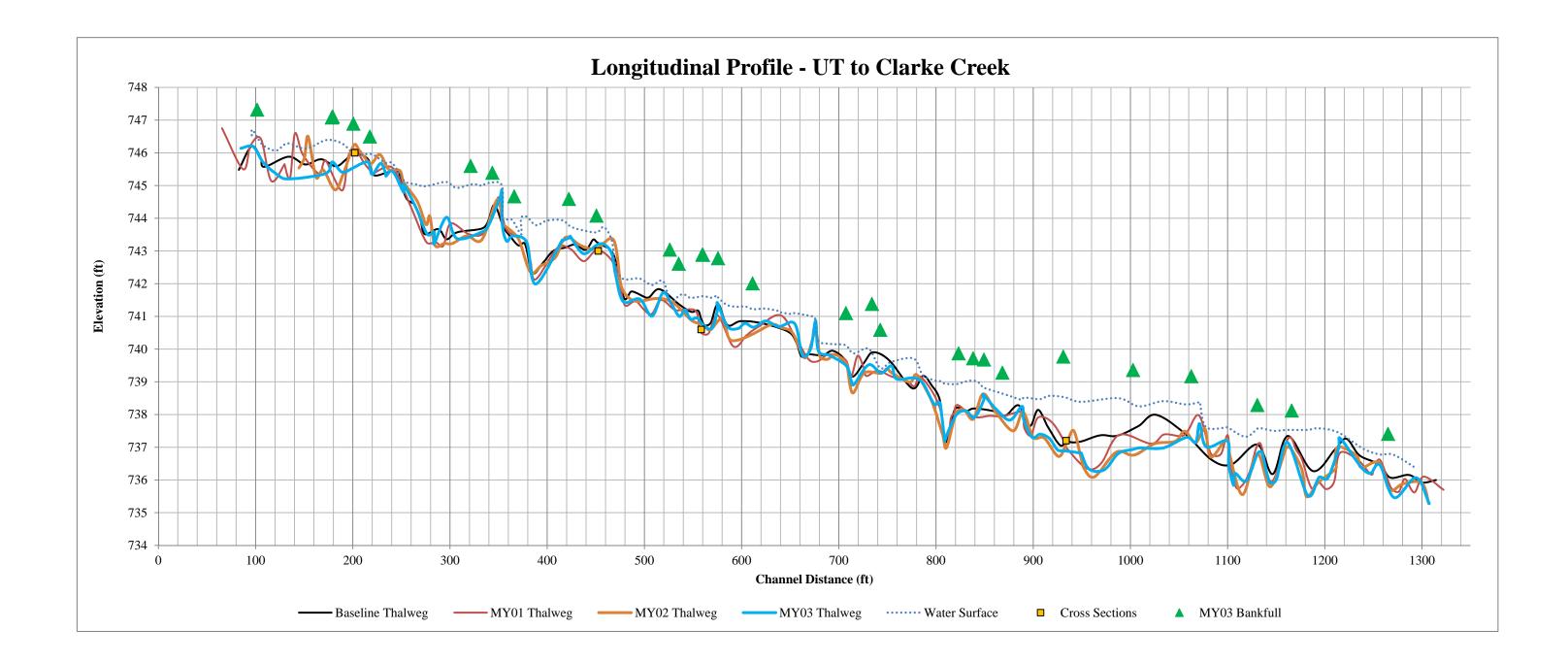
Sta. 3+33 Looking Downstream

Station	Elevation
0	751.29
0.54	750.27
1.83	749.67
4.85	748.03
15.97	746.47
22.65	745.75
27.03	744.98
28.03	744.76
29.09	744.02
31.25	743.51
32.13	743.58
33.72	744.07
36.01	744.67
56.89	747.21

Reach	UT1
River Basin	Yadkin/Pee Dee
Cross Section ID	XSC-8, Riffle, 4+14
Drainage Area (Sq Mi)	0.46
Date	10/21/2016
Observers	P. Beach, E. Webster

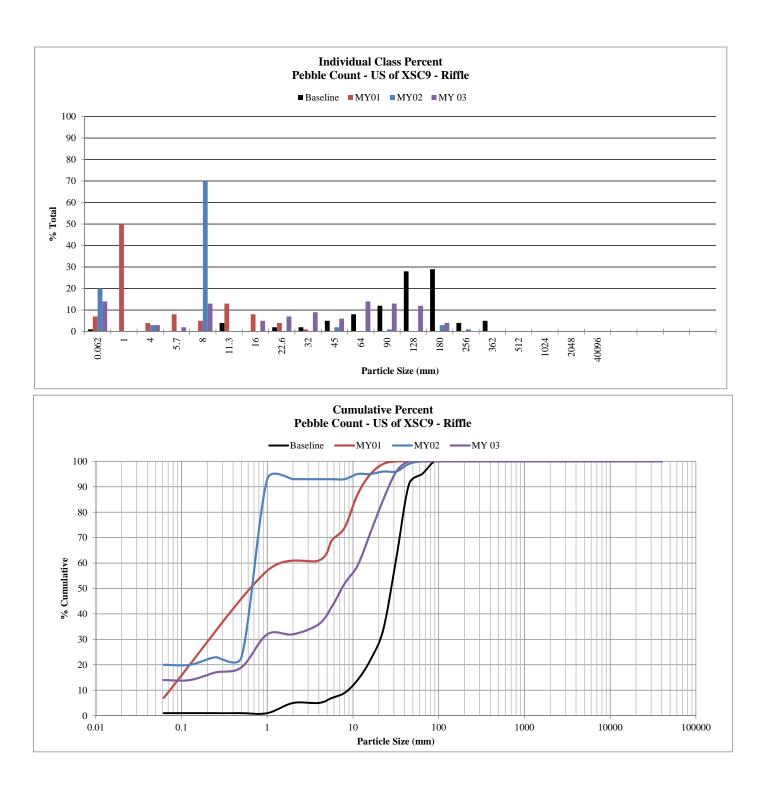
SUMMARY DATA	
Baseline Bankfull Datum, ft	744.70
Bankfull Cross Sectional Area, ft ²	5.68
Bankfull Width, ft	5.69
Max Depth at Bankfull, ft	1.19
Mean Depth at Bankfull, ft	1.00
Width/Depth Ratio	5.70
Flood Prone Width, ft	24
Flood Prone Area Elevation	745.89
Entrenchment Ratio	4.22
Bank Height Ratio	1.24


UT1 XSC 8 - Riffle - - Baseline Bankfull Datum ---- Baseline ----- MY01 —____MY02 —_MY03 752 751 750 Elevation (feet) 749 748 747 746 745 744 743 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 0 2 4 6 Distance (feet)


Station	Elevation
0	749.04
0.17	749.15
4.71	748.1
15.26	747.28
22.56	747.15
24.24	746.89
24.84	745.9
27.57	745.55
28.92	745.73
30.34	746.58
36.15	747.61
41.94	747.87
47.62	748.97
47.66	748.92

UT to Clarke Creek
Yadkin/Pee Dee
XSC-9, Riffle, 2+02
1.08
10/21/2016
P. Beach, E. Webster

SUMMARY DATA	
Baseline Bankfull Datum, ft	746.79
Bankfull Cross Sectional Area, ft ²	4.41
Bankfull Width, ft	6.1
Max Depth at Bankfull, ft	1.24
Mean Depth at Bankfull, ft	0.72
Width/Depth Ratio	8.44
Flood Prone Width, ft	38
Flood Prone Area Elevation	748.03
Entrenchment Ratio	6.23
Bank Height Ratio	1.29

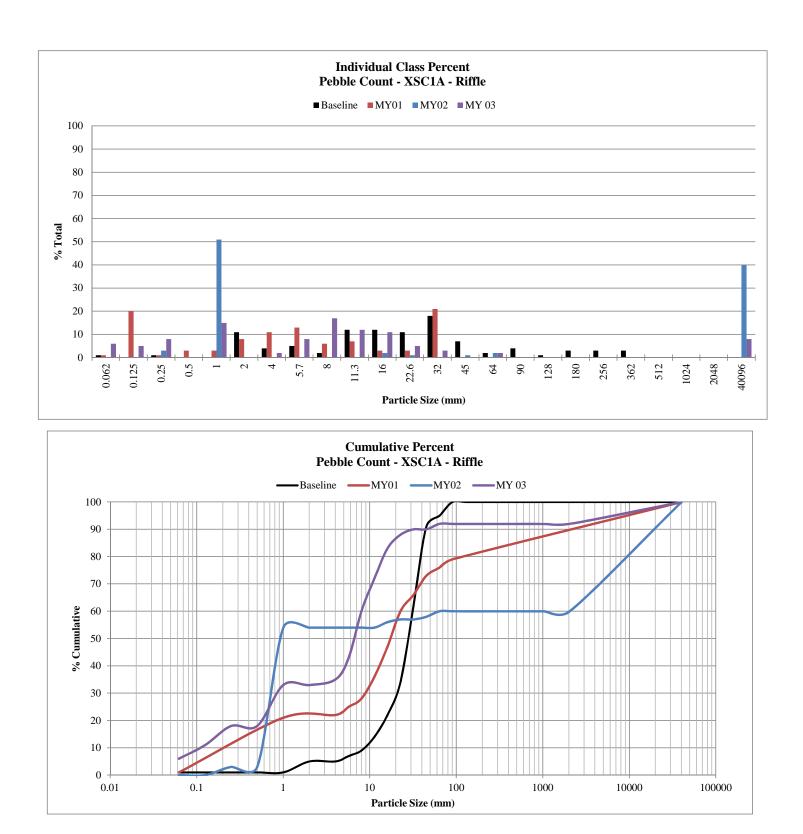


UT to Clarke Creek - US of XS9 - Riffle Pebble Count

Location: STA 2+02

Inches	Particle	Millimeters		Count	% Total	% Cum.	
	Silt/Clay	< 0.062		16	14	14	
	Very Fine	0.062-0.125	S	0	0	14	
	Fine	0.125-0.25	А	3	3	17	
	Medium	0.25-0.50	Ν	2	2	19	
	Coarse	0.50-1.0	D	14	13	32	
0.04-0.08	Very Coarse	1.0-2		0	0	32	
0.08-0.16	Very Fine	2-4		5	5	36	
0.16-0.22	Fine	4-5.7	G	8	7	43	
0.22-0.31	Fine	5.7-8	R	10	9	52	
0.31-0.44	Medium	8-11.3	A K	7	6	59	
0.44-0.63	Medium	11.3-16	A V	15	14	72	
0.63-0.89	Coarse	16-22.6	v E	14	13	85	
0.89-1.26	Coarse	22.6-32		13	12	96	
1.26-1.77	Very Coarse	32-45		4	4	100	
1.77-2.5	Very Coarse	45-64		0	0	100	
2.5-3.5	Small	64-90	С 0	0	0	100	
3.5-5.0	Small	90-128	B	0	0	100	
5.0-7.1	Medium	128-180	B L	0	0	100	
7.1-10.1	Large	180-256	E L	0	0	100	
10.1-14.3	Small	256-362	B O	0	0	100	
14.3-20	Small	362-512	U L	0	0	100	
20-40	Medium	512-1024	D	0	0	100	
40-80	Large	1024-2048	E R	0	0	100	
	Bedrock	Bedrock	Bedrock	0	0	100	
	Total Counted 111						

Summary Data				
D50 7.5				
D84	22			
D95 31				

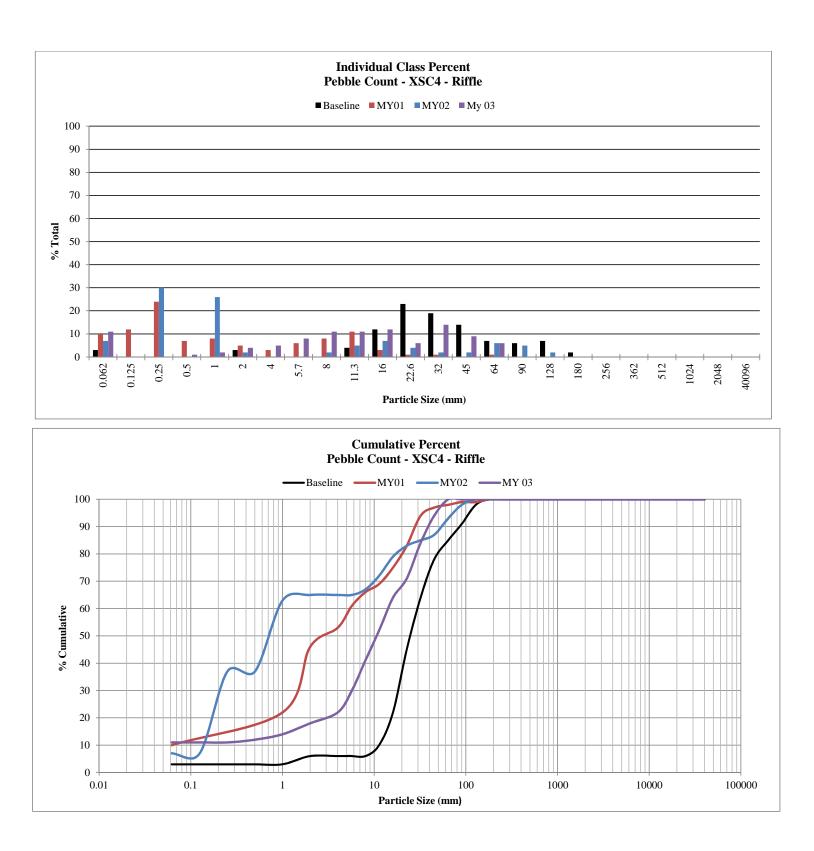


UT to Clarke Creek - XS1A - Riffle Pebble Count

Location: STA 5+58

Inches	Particle	Millimeters		Count	% Total	% Cum.
	Silt/Clay	< 0.062		7	6	6
	Very Fine	0.062-0.125	S	6	5	11
	Fine	0.125-0.25	А	9	8	18
	Medium	0.25-0.50	Ν	0	0	18
	Coarse	0.50-1.0	D	18	15	33
0.04-0.08	Very Coarse	1.0-2		0	0	33
0.08-0.16	Very Fine	2-4		2	2	35
0.16-0.22	Fine	4-5.7	G	10	8	43
0.22-0.31	Fine	5.7-8	R	20	17	60
0.31-0.44	Medium	8-11.3	K A	14	12	72
0.44-0.63	Medium	11.3-16	A V	13	11	83
0.63-0.89	Coarse	16-22.6	v E	6	5	88
0.89-1.26	Coarse	22.6-32		3	3	90
1.26-1.77	Very Coarse	32-45		0	0	90
1.77-2.5	Very Coarse	45-64		2	2	92
2.5-3.5	Small	64-90	C O	0	0	92
3.5-5.0	Small	90-128	B	0	0	92
5.0-7.1	Medium	128-180	B L	0	0	92
7.1-10.1	Large	180-256	L E	0	0	92
10.1-14.3	Small	256-362	B O	0	0	92
14.3-20	Small	362-512	U L	0	0	92
20-40	Medium	512-1024	D	0	0	92
40-80	Large	1024-2048	E R	0	0	92
	Bedrock	Bedrock	Bedrock	10	8	100
		Tota	l Counted	120		

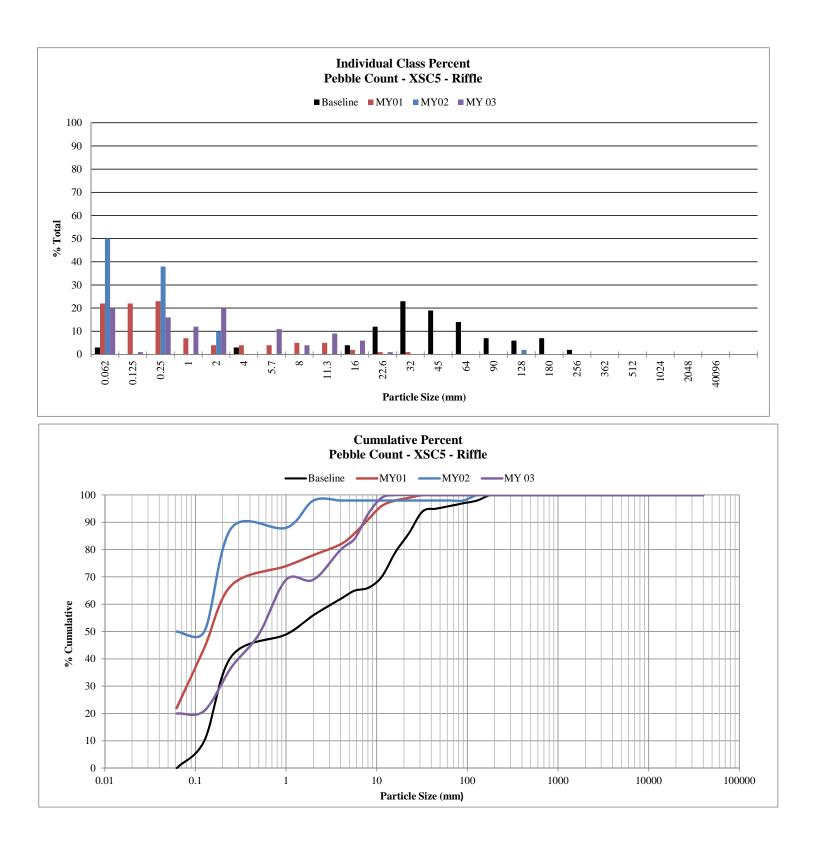
Summary Data			
D50 6.75			
D84	18		
D95 3,000			



UT to Clarke Creek - Reach: UT1 - XS4 - Riffle Pebble Count

Location: STA 1+29

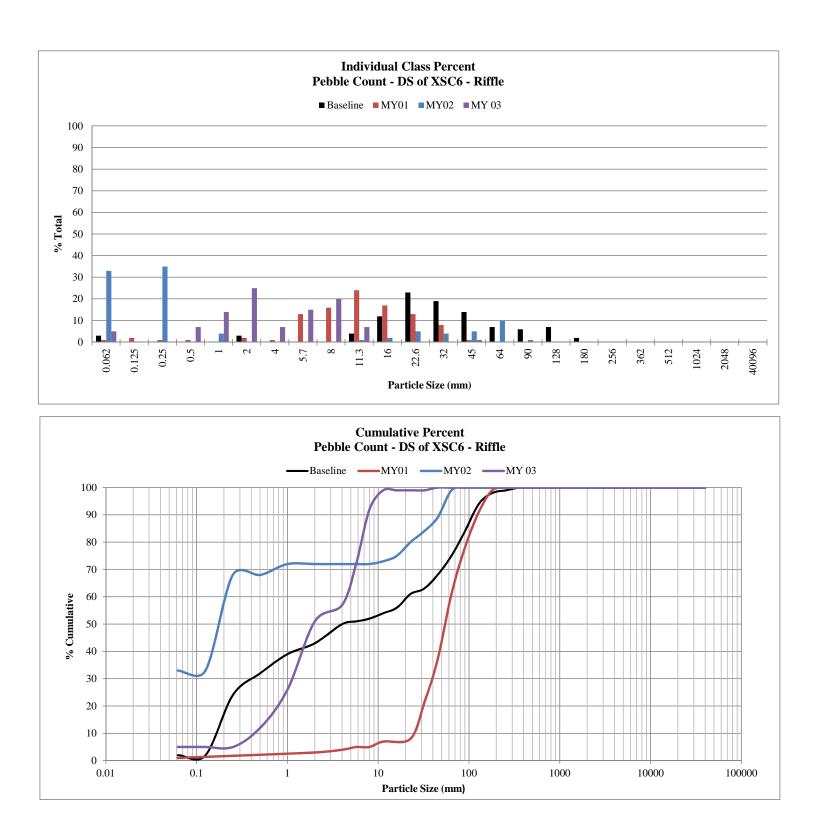
Inches	Particle	Millimeters		Count	% Total	% Cum.
	Silt/Clay	< 0.062		14	11	11
	Very Fine	0.062-0.125	S	0	0	11
	Fine	0.125-0.25	A	0	0	11
	Medium	0.25-0.50	N	1	1	12
	Coarse	0.50-1.0	D	3	2	14
0.04-0.08	Very Coarse	1.0-2		5	4	18
0.08-0.16	Very Fine	2-4		6	5	22
0.16-0.22	Fine	4-5.7	G	10	8	30
0.22-0.31	Fine	5.7-8	R	14	11	41
0.31-0.44	Medium	8-11.3	R A	14	11	52
0.44-0.63	Medium	11.3-16	A V	16	12	64
0.63-0.89	Coarse	16-22.6	V E	8	6	71
0.89-1.26	Coarse	22.6-32		18	14	84
1.26-1.77	Very Coarse	32-45		12	9	94
1.77-2.5	Very Coarse	45-64		8	6	100
2.5-3.5	Small	64-90	C O	0	0	100
3.5-5.0	Small	90-128	B	0	0	100
5.0-7.1	Medium	128-180	B L	0	0	100
7.1-10.1	Large	180-256	E E	0	0	100
10.1-14.3	Small	256-362	B O	0	0	100
14.3-20	Small	362-512	U L	0	0	100
20-40	Medium	512-1024	D	0	0	100
40-80	Large	1024-2048	E R	0	0	100
	Bedrock	Bedrock	Bedrock	0	0	100
		Tot	al Counted	129		


Summary Data			
D50 10.5			
D84	32		
D95	46		

Location: STA 2+69

Inches	Particle	Millimeters		Count	% Total	% Cum.
	Silt/Clay	< 0.062		20	20	20
	Very Fine	0.062-0.125	S	1	1	21
	Fine	0.125-0.25	А	16	16	37
	Medium	0.25-0.50	Ν	12	12	49
	Coarse	0.50-1.0	D	20	20	69
0.04-0.08	Very Coarse	1.0-2		0	0	69
0.08-0.16	Very Fine	2-4		11	11	80
0.16-0.22	Fine	4-5.7	C	4	4	84
0.22-0.31	Fine	5.7-8	G R	9	9	93
0.31-0.44	Medium	8-11.3	A R	6	6	99
0.44-0.63	Medium	11.3-16		1	1	100
0.63-0.89	Coarse	16-22.6	V E	0	0	100
0.89-1.26	Coarse	22.6-32		0	0	100
1.26-1.77	Very Coarse	32-45	L	0	0	100
1.77-2.5	Very Coarse	45-64		0	0	100
2.5-3.5	Small	64-90	С 0	0	0	100
3.5-5.0	Small	90-128	B	0	0	100
5.0-7.1	Medium	128-180	B L	0	0	100
7.1-10.1	Large	180-256	L E	0	0	100
10.1-14.3	Small	256-362	B O	0	0	100
14.3-20	Small	362-512	U L	0	0	100
20-40	Medium	512-1024	D	0	0	100
40-80	Large	1024-2048	E R	0	0	100
	Bedrock	Bedrock	Bedrock	0	0	100
		Tota	l Counted	100		

Summary Data			
D50	0.55		
D84	5.7		
D95	8.5		

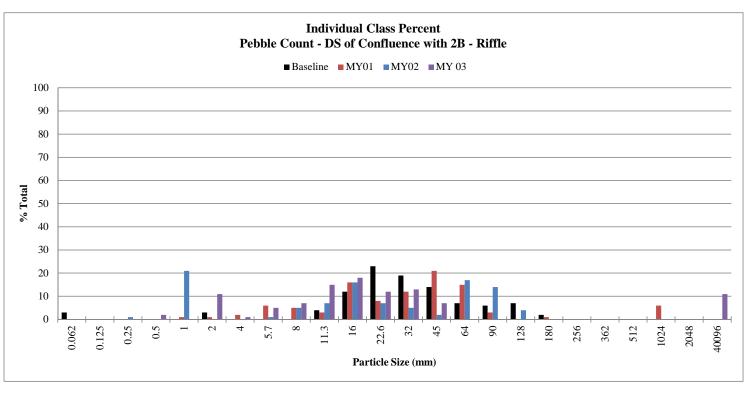

UT to Clarke Creek - Reach: UT1 - DS of XS6 - Riffle Pebble Count

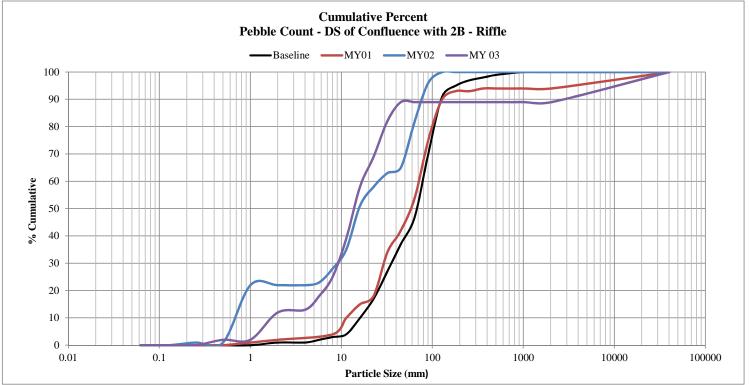
Location: STA 3+34

Inches	Particle	Millimeters		Count	% Total	% Cum.
	Silt/Clay	< 0.062		7	5	5
	Very Fine	0.062-0.125	S	0	0	5
	Fine	0.125-0.25	А	0	0	5
	Medium	0.25-0.50	Ν	9	7	12
	Coarse	0.50-1.0	D	19	14	26
0.04-0.08	Very Coarse	1.0-2		34	25	51
0.08-0.16	Very Fine	2-4		9	7	57
0.16-0.22	Fine	4-5.7	C	20	15	72
0.22-0.31	Fine	5.7-8	G R	27	20	92
0.31-0.44	Medium	8-11.3		10	7	99
0.44-0.63	Medium	11.3-16	A	0	0	99
0.63-0.89	Coarse	16-22.6	V E L	0	0	99
0.89-1.26	Coarse	22.6-32		0	0	99
1.26-1.77	Very Coarse	32-45		1	1	100
1.77-2.5	Very Coarse	45-64		0	0	100
2.5-3.5	Small	64-90	C	0	0	100
3.5-5.0	Small	90-128	O B	0	0	100
5.0-7.1	Medium	128-180	B L	0	0	100
7.1-10.1	Large	180-256	L E	0	0	100
10.1-14.3	Small	256-362	B O	0	0	100
14.3-20	Small	362-512	U L	0	0	100
20-40	Medium	512-1024	D	0	0	100
40-80	Large	1024-2048	E R	0	0	100
	Bedrock	Bedrock	Bedrock	0	0	100
	136					

Summary Data			
D50	1.9		
D84	7		
D95	9		

UT to Clarke Creek DMS Project #92500 January 2017

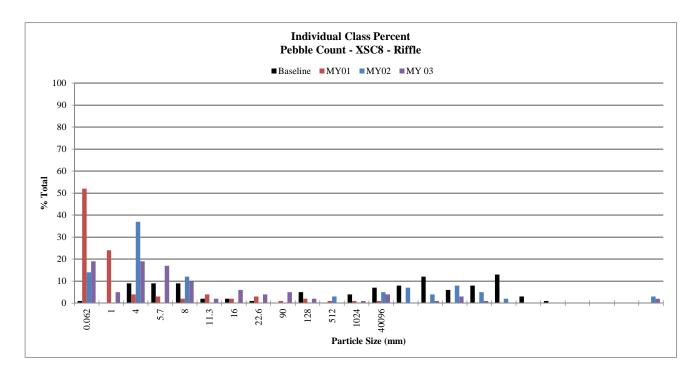


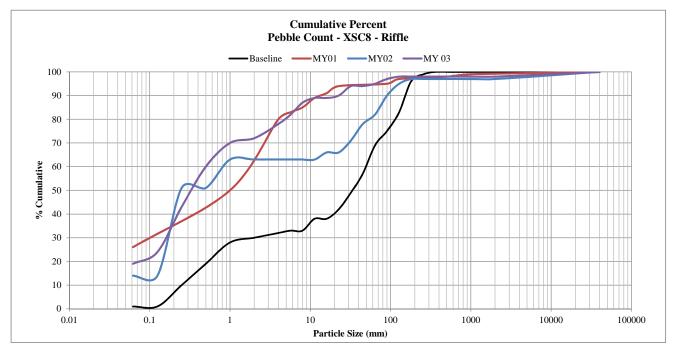

UT to Clarke Creek - DS of Confluence with 2B - Riffle Pebble Count

Location: STA 12+00

Inches	Particle	Millimeters		Count	% Total	% Cum.
	Silt/Clay	< 0.062		0	0	0
	Very Fine	0.062-0.125	S	0	0	0
	Fine	0.125-0.25	А	0	0	0
	Medium	0.25-0.50	Ν	2	2	2
	Coarse	0.50-1.0	D	0	0	2
0.04-0.08	Very Coarse	1.0-2		14	11	12
0.08-0.16	Very Fine	2-4		1	1	13
0.16-0.22	Fine	4-5.7		6	5	18
0.22-0.31	Fine	5.7-8	G	9	7	25
0.31-0.44	Medium	8-11.3	R	19	15	39
0.44-0.63	Medium	11.3-16	A V	24	18	58
0.63-0.89	Coarse	16-22.6	E V	15	12	69
0.89-1.26	Coarse	22.6-32		17	13	82
1.26-1.77	Very Coarse	32-45		9	7	89
1.77-2.5	Very Coarse	45-64		0	0	89
2.5-3.5	Small	64-90	С 0	0	0	89
3.5-5.0	Small	90-128	B	0	0	89
5.0-7.1	Medium	128-180	В	0	0	89
7.1-10.1	Large	180-256	L E	0	0	89
10.1-14.3	Small	256-362	B O	0	0	89
14.3-20	Small	362-512	U L	0	0	89
20-40	Medium	512-1024	D	0	0	89
40-80	Large	1024-2048	E R	0	0	89
	Bedrock	Bedrock	Bedrock	14	11	100
		Tota	l Counted	130		

Summa	ry Data
D50	15
D84	35
D95	10000

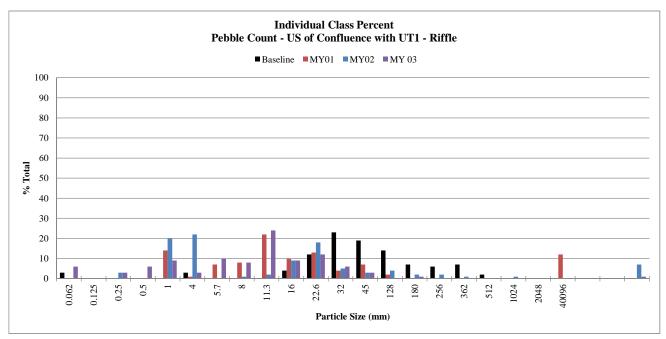


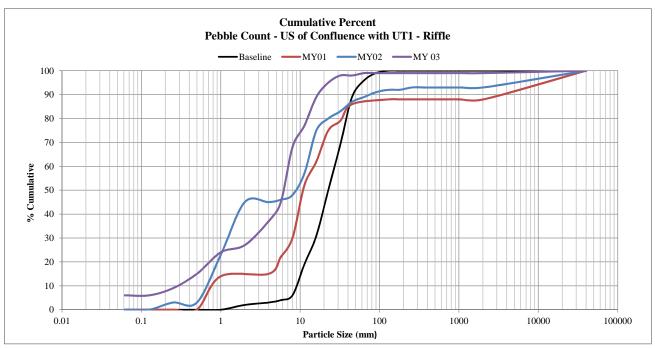

UT to Clarke Creek - Reach: UT1 - XS8 - Riffle Pebble Count

Location: STA 4+14

Inches	Particle	Millimeters		Count	% Total	% Cum.
	Silt/Clay	< 0.062		22	19	19
	Very Fine	0.062-0.125	S	6	5	24
	Fine	0.125-0.25	А	23	19	43
	Medium	0.25-0.50	Ν	20	17	60
	Coarse	0.50-1.0	D	12	10	70
0.04-0.08	Very Coarse	1.0-2		2	2	72
0.08-0.16	Very Fine	2-4		7	6	78
0.16-0.22	Fine	4-5.7	G	5	4	82
0.22-0.31	Fine	5.7-8	R	6	5	87
0.31-0.44	Medium	8-11.3	K A	2	2	89
0.44-0.63	Medium	11.3-16	A V	0	0	89
0.63-0.89	Coarse	16-22.6	v E	1	1	90
0.89-1.26	Coarse	22.6-32	L L	5	4	94
1.26-1.77	Very Coarse	32-45	L	0	0	94
1.77-2.5	Very Coarse	45-64		1	1	95
2.5-3.5	Small	64-90	C O	3	3	97
3.5-5.0	Small	90-128	B	1	1	98
5.0-7.1	Medium	128-180	B L	0	0	98
7.1-10.1	Large	180-256	L E	0	0	98
10.1-14.3	Small	256-362	B O	0	0	98
14.3-20	Small	362-512	U L	0	0	98
20-40	Medium	512-1024	D	0	0	98
40-80	Large	1024-2048	E R	0	0	98
	Bedrock	Bedrock	Bedrock	2	2	100
		Tota	l Counted	118		

Summa	ry Data
D50	0.2
D84	7
D95	30




UT to Clarke Creek - US of Confluence with UT1 - Riffle Pebble Count

Location: STA 7+50

Inches	Particle	Millimeters		Count	% Total	% Cum.
	Silt/Clay	< 0.062		6	6	6
	Very Fine	0.062-0.125	S	0	0	6
	Fine	0.125-0.25	А	3	3	9
	Medium	0.25-0.50	Ν	6	6	15
	Coarse	0.50-1.0	D	9	9	24
0.04-0.08	Very Coarse	1.0-2		3	3	27
0.08-0.16	Very Fine	2-4		10	10	37
0.16-0.22	Fine	4-5.7		8	8	45
0.22-0.31	Fine	5.7-8	G R	24	24	68
0.31-0.44	Medium	8-11.3		9	9	77
0.44-0.63	Medium	11.3-16	A	12	12	89
0.63-0.89	Coarse	16-22.6	V E	6	6	95
0.89-1.26	Coarse	22.6-32		3	3	98
1.26-1.77	Very Coarse	32-45		0	0	98
1.77-2.5	Very Coarse	45-64		1	1	99
2.5-3.5	Small	64-90	С 0	0	0	99
3.5-5.0	Small	90-128	B	0	0	99
5.0-7.1	Medium	128-180	B L	0	0	99
7.1-10.1	Large	180-256	L E	0	0	99
10.1-14.3	Small	256-362	B O	0	0	99
14.3-20	Small	362-512	U L	0	0	99
20-40	Medium	512-1024	D	0	0	99
40-80	Large	1024-2048	E R	0	0	99
	Bedrock	Bedrock	Bedrock	1	1	100
		Tota	l Counted	101		

Summa	ry Data
D50	5
D84	15
D95	22

					L F						eam Da - UT Cl				(vot)										
Parameter	Gauge ²	Reo	gional C	urve				g Cond		2500 -				each(es				Design	1		Мс	nitorin	g Base	ine	
Dimension and Substrate Diffle Only			1	T	Min	1	Med	Max	SD ⁵	_	Min		Med	Max	SD ⁵	_	Min		Max	Min	1	Med	Max	SD ⁵	
Dimension and Substrate - Riffle Only Bankfull Width (ft	•)	LL 7	UL 30	Eq. 3	11.38	Mean	ivied	12.62	50	n	8.26	Mean	ivied	10.93	50	n	Min 10.57	Med	12.2	6.72	Mean 7.95	7.17	9.97	- SD	n 3
Floodprone Width (fl	,	7	50	5	36.14			49.08			11.69			19.17			54.63		63.43	18.7	25.23	22.4	34.6	-	3
Bankfull Mean Depth (f		1	2.5	1.17	1.77			1.83			1.02			1.98			1.22		1.46	0.39	0.9	0.76	1.55	-	3
¹ Bankfull Max Depth (f			2.0					1.00			1.57			2.05			1.89		2.21	0.85	1.313	0.94	2.15	-	3
Bankfull Cross Sectional Area (ft		5	40	8.47	20.88			22.29			8.42			17.17			12.89		17.86	2.8	7.803	5.11	15.5	-	3
Width/Depth Rati	<i>,</i>	0	40	0.47	6.22			7.13			6.96			8.1			8.36		8.66	6.41	11.2	8.84	18.36	-	3
Entrenchment Rati	-				2.86			4.31			1.41			1.86			5.17		5.2	2.61	3.137	3.33	3.47	-	3
¹ Bank Height Rati	-				1.43			1.48			1.86			2.22			1		1	0.82	0.897	0.87	0. <i>47</i>	-	3
Profile	0				1.40			1.40			1.00			2.22					· ·	0.02	0.001	0.01	<u> </u>		0
	3			1		-	-	1		1	1			-		<u> </u>	1	I		8.89	10.21	12.05	54.02	13.73	10
Riffle Length (ft																				8.89 0.008	19.21 0.026	0.021	0.073	0.019	10
Riffle Slope (ft/ft	-										-						-	-		14.37	42.2	34.77		26.2	
Pool Length (f	-										-														10
Pool Max depth (f	·		-	-																0.698	2.027	2.141	3.445	0.793	10
Pool Spacing (f	()			<u> </u>					<u> </u>				<u> </u>			<u> </u>				34.82	02.01	83.19	151.6	36.88	9
Pattern			-	-		-	-	-		1	1			-			-	-		ī		I	1		
Channel Beltwidth (f					-						-						-	-		14	14.8	14.5	15.9	-	3
Radius of Curvature (f	,		-	-													-			10.4	16.17	16.9	21.2	-	3
Rc:Bankfull width (ft/f	<i>.</i>				<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>				<u> </u>		1.5	2	2	2.5	-	3
Meander Wavelength (fr	-				<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>				<u> </u>		67.3	80.1	70	103	-	3
Meander Width Rati	0																			1.9	4.6	2.0	9.8	-	3
Transport parameters																									
Reach Shear Stress (competency) lb/	2				i —		0	74			ī						1	0.74		i			-		
Max part size (mm) mobilized at bankfu								1										0.41					_		
Stream Power (transport capacity) W/m	-							-										-					_		
Additional Reach Parameters																									
Rosgen Classificatio					1			- 4			1			4 -			1	E4		i —			- 4		
Bankfull Velocity (fps			T	r	<u> </u>			4 03					В	4c									4		
Bankfull Discharge (cfs		- 25	300	- 26.78										0				4.4-4.9					-		
Valley length (f	•	25	300	20.70	-			0.8			-			28				54.6-63.	4				24.0		
Channel Thalweg length (f					-			512			-			00									512 - -		
	_				-			507			-			-			-	-					507		
Sinuosity (f Water Surface Slope (Channel) (ft/ft					<u> </u>			07			1			-				-					.07		
BF slope (ft/ft					<u> </u>			075 083			1			-				0.0083					089 092		
	_				<u> </u>						-							-							
³ Bankfull Floodplain Area (acres					<u> </u>			-			-			•				-					-		
⁴ % of Reach with Eroding Bank					<u> </u>			-						-							_				
Channel Stability or Habitat Metri					<u> </u>			•						-											
Biological or Othe	er							-						-											

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

UT to Clarke Creek EEP Project #92500 January 2017

											eam Da														
	2				r					EP #9	2500 -						1								
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	ition			Refer	ence Re	each(es) Data			Design			Mo	onitorin	g Base	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft))	6	11	2.07	9.08			11.26			7.09			11.96			10.6		10.77	7.18	8.44	8.60	9.40	0.93	4
Floodprone Width (ft))				19.5			20.02			13.18			39.46			49.4		93.72	11.30	25.48	16.40	57.80	21.83	4
Bankfull Mean Depth (ft)	6	11	0.89	1.51			1.7			0.78			1.33			1.1		1.28	0.37	0.87	0.84	1.43	0.46	4
¹ Bankfull Max Depth (ft)				1.83			2.45			1.11			1.82			1.6		2.14	0.56	1.10	0.96	1.92	0.59	4
Bankfull Cross Sectional Area (ft ²)	6	12	4.73	15.46			17.01			8.69			13.75			11.84		13.54	3.14	7.57	6.84	13.45	4.67	4
Width/Depth Ratio	D				5.34			7.46			5.81			15.33			8.28		9.79	6.57	12.23	9.83	22.69	7.23	4
Entrenchment Ratio	D				1.73			2.2			1.85			3.8			4.59		8.84	1.57	2.88	1.90	6.15	2.20	4
¹ Bank Height Ratio	b				1.34			1.56			1.53			1.6			1		1	0.73	0.93	1.00	1.00	0.14	4
Profile					-						-						-			-					
Riffle Length (ft)																			4.82	9.83	8.81	18.46	5.27	5
Riffle Slope (ft/ft)																			0.008	0.023	0.025	0.036	0.011	5
Pool Length (ft)																			22.7	29.14	27.48	39.29	7.208	5
Pool Max depth (ft)																			0.944	1.956	1.857	3.012	0.777	5
Pool Spacing (ft)																			73.48	108.4	116.9	126.4	24.56	4
Pattern																									
Channel Beltwidth (ft)				1															13.7	15.7	13.8	19.8	-	3
Radius of Curvature (ft)																			21.9	32.6	34.7	41.1	-	3
Rc:Bankfull width (ft/ft)				1															2.5	3.9	3.6	5.6	-	3
Meander Wavelength (ft))																			41.5	64.1	46	105	-	3
Meander Width Ratio																				1.46	1.78	1.59	2.3	-	3
Transport parameters																									
Reach Shear Stress (competency) lb/f	2						0.	88										0.59					-		
Max part size (mm) mobilized at bankful							0.	75										4.27					-		
Stream Power (transport capacity) W/m	2							-										-					-		
Additional Reach Parameters																									
Rosgen Classification	า						В	4c					B	4c				B4c				В	4c		
Bankfull Velocity (fps)	-	-	-			4.	11										3.6-4.0					-		
Bankfull Discharge (cfs)	10	200	14.48			6	64										42.2-53.4	4						
Valley length (ft)						6	57					15	50								6	57		
Channel Thalweg length (ft)						7	23										-				7	58		
Sinuosity (ft)						1	.1										-				1.	15		
Water Surface Slope (Channel) (ft/ft))						0.0	009										0.0077				0.0	089		
BF slope (ft/ft)						0.0	009										0.009				0.0	083		
³ Bankfull Floodplain Area (acres))							-										-					-		
⁴ % of Reach with Eroding Banks	S							-																	
Channel Stability or Habitat Metric								-																	
Biological or Other	r							-																	

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

				Tal	ble 11	a. M	onito	ring D	Data -	Dime	ensior	nal Mo	orpho	logy	Sumr	nary (Dime	ensio	nal Pa	arameters – Cross Sections)															
			UT	Γ to Cl	larke	Creek	/DMS	\$ #925	00	Segm	ent/R	each:	UT to	Clark	ke Cre	ek (1	507',	XS1,	1A, 2,	9) an	d UT1	(758	', XS 3	3, 4, 5	5, 6, 8	3)									
		С		ection								1A (Po						Section								9 (Riffl	le)								
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	744.2	744.2	744.2	744.2				742.4	742.4	742.4	742.4				739.37	739.4	739.4	739.4				746.7	746.7	746.7	746.7										1
Bankfull Width (ft)	6.7	6.9	7.08	6.89				9.02	8	7	8.71				9.97	10.7	9.85	9.77				7.17	6.35	7.7	6.1										ı
Floodprone Width (ft)	22.4	29.5	30.98	21				25.6	41.79	38	29				34.6	45	45.14	47.25				18.7	21.5	12.13	38										1
Bankfull Mean Depth (ft)	0.76	0.67	0.87	0.63				0.2	0.75	1.1	0.91				1.55	1.28	1.9	2.06				0.39	0.39	0.45	0.72										1
Bankfull Max Depth (ft)	0.94	1.17	1.15	1.03				1.47	1.91	1.8	1.65				2.15	2.36	2.27	2.48				0.85	0.68	0.56	1.24										I
Bankfull Cross Sectional Area (ft ²)	5.11	4.59	6.15	4.35				1.78	5.96	7.67	7.92				15.5	13.66	18.7	20.16				2.8	2.48	3.47	4.41										1
Bankfull Width/Depth Ratio	8.84	10.37	8.15	10.9				45.71	10.74	6.39	9.58				6.41	8.38	5.19	4.73				18.36	16.26	17.09	8.44										
Bankfull Entrenchment Ratio	3.33	4.28	4.38	3.05				2.84	5.22	5.43	3.33				3.47	4.21	4.58	4.84				2.61	3.39	1.58	6.23										1
Bankfull Bank Height Ratio	1	0.84	0.93	1.09				1	1.22	0.94	1.47				0.82	0.89	1.1	1.09				0.87	0.97	1.36	1.29										
Cross Sectional Area between end pins (ft ²)	65.6	60.5	60.6	61.32				145.9	142.8	132.2	113.9				187.2	179	178.9	174.7				52.1	52.4	46.4	71.17										
d50 (mm)	-	-	-	-				17	18	0.9	6.75				-	-	-	-				28	0.6	0.7	7.5										
		С	ross S	ection	3 (Poo	l)			С	ross S	ection	4 (Riffl	e)			C	ross S	Section	5 (Poc	ol)			С	ross S	Section	n 6 (Poc	ol)			С	ross Se	ection	8 (Riffle	e)	
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	741.1	741.1	741.1	741.1				745.8	745.8	745.8	745.8				745.9	745.9	745.9	745.9				744.6	744.6	744.6	744.6				744.7	744.7	744.7	744.7			1
Bankfull Width (ft)	9.78	10.42	10.81	10.11				8.4	9.93	8.4	8.41				8.18	7.88	7.12	7.31				7.18	5.29	5.42	6				8.75	8	9.12	5.69			
Floodprone Width (ft)	57.8	60.8	63	62				13.3	22.81	28.5	26				40	40	44	34				11.3	11.3	12	16				19.5	16.15	28.94	24			I
Bankfull Mean Depth (ft)	1.66	1.4	1.62	1.93				0.37	0.4	0.54	0.5				0.84	0.76	0.68	0.85				0.64	0.47	0.55	0.71				1.04	0.8	0.92	1			I
Bankfull Max Depth (ft)	1.92	2.17	2.67	2.55				0.56	0.64	0.73	0.68				1.57	1.51	1.65	1.33				0.82	0.84	0.81	0.96				1.09	0.9	1.2	1.19			I
		14.57	17.54	19.48				3.14	3.95		4.24				6.9	5.98	4.86	6.2				4.59	2.48	2.96	4.23				9.09	6.4	8.37	5.68			
Bankfull Width/Depth Ratio	5.89	7.45	6.66	5.25				22.69	24.96	15.51	16.67				9.7	10.38	10.43	8.61				11.23	11.28	9.92	8.51				8.42	10	9.94	5.7			
Bankfull Entrenchment Ratio	5.91	5.83	5.83	6.13				1.58	2.3	3.39	3.09				4.89	5.08	6.18	4.65				1.57	2.14	2.21	2.67				2.22	2.02	2.02	4.22			1
Bankfull Bank Height Ratio	1	1.11	0.97	1.17				0.73	0.98	1.16	1.99				1	1	0.88	1.59				1	1.09		1.61				1	1.12	1.02	1.24			
Cross Sectional Area between end pins (ft ²)	170.9	174	157.5	140.4				100.5	115.9	98	112.4				258.1	258.8	285.7	291.4				247.5	230.5	271.5	388.2				231.5	229.9		248.5			
d50 (mm)	-	-	-	-				24	2.5	0.7	10.5				0.5	0.15	0.062	0.55				4	55	0.2	1.9				24	0.125	0.25	0.2			

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

												E					onitori									у												
													UT	to C	larke (Creek	k/DMS	#925	500 - I	UT	to Cla	arke	Creel	k (1507	7 lf)													
Parameter			Ba	seline)				1	/IY-1					Μ	Y-2						M١	Y- 3					М	IY- 4						М	Y- 5		
Dimension and Substrate - Riffle only	Min	Mea	n Me	d Ma	x SD	'n	Min	Mear	n Me	d Max	SD ⁴	n	Min	Mear	n Med	Мах	x SD ⁴	n	Min	n M	lean	Med	Max	SD ⁴	n	Min	Mean	Med	I Ma	ix S	$5D^4$	n	Min	Mear	Med	Max	SD ⁴	4 n
Bankfull Width (ft)	6.72	7.95	3 7.1	9.9	7 -	3	6.35	7.98	6.9) 10.7	' -	3	7.08	8.21	7.7	9.85	5 1.45	3	6.1	7.	.587	6.89	9.77	1.93	3													
Floodprone Width (ft)	18.7	25.2	3 22.4	4 34.6	6 -	3	21.5	32	29.	5 45	-	3	12.13	29.42	2 30.98	45.1	4 16.56	3	21	3	5.42	38	47.25	13.31	3													
Bankfull Mean Depth (ft)	0.39	0.9	0.70	6 1.5	5 -	3	0.39	0.78	0.6	7 1.28	-	3	0.45	1.07	0.87	1.9	0.75	3	0.63	3 1.	.137	0.72	2.06	0.80	3													
¹ Bankfull Max Depth (ft)	0.85	1.31	3 0.94	1 2.1	5 -	3	0.68	1.40) 1.1	7 2.36	-	3	0.56	1.33	1.15	2.27	7 0.87	3	1.03	3 1.	.583	1.24	2.48	0.78	3													
Bankfull Cross Sectional Area (ft ²)	2.8	7.80	3 5.1	15.	5 -	3	2.48	6.91	4.5	9 13.6	- ô	3	3.47	9.44	6.15	18.7	7 8.13	3	4.35	5 9	9.64	4.41	20.16	9.11	3													
Width/Depth Ratio	6.41	11.2	2 8.84	18.3	- 66	3	8.38	11.6	7 10.3	16.20	- ô	3	5.19	10.14	4 8.15	17.0	9 6.2	3	4.73	3 8	.023	8.44	10.9	3.11	3													
Entrenchment Ratio					7 -	3	3.39	3.96	6 4.2	1 4.28	-	3		3.51			8 1.68	3					6.23	1.59	3													
¹ Bank Height Ratio	0.82	0.89	0.8	7 1	-	3	0.84	0.90	0.8	9 0.97	-	3	0.93	1.13	1.1	1.36	6 0.22	3	1.09	9 1.	.157	1.09	1.29	0.12	3													
Profile																																						
Riffle Length (ft)	4.82	9.82	6 8.8	18.4	6 5.27	2 5	26.3	1 57.23	3 65.3	82.74	4 24.05	5	14.48	23.4	1 21.86	37.2	8.65	5	13.3	9 2	7.55 2	23.27	50.39	14.07	5												T	
Riffle Slope (ft/ft)	0.008	0.02	3 0.02	5 0.03	6 0.01	1 5	0.00	3 0.02	0.0	1 0.049	9 0.02	5	0.012	0.04	0.035	0.06	6 0.02	5	0.00	3 0.	.037 (0.038	0.087	0.03	5													
Pool Length (ft)	22.7	29.1	4 27.4	8 39.2	9 7.20	8 5	15.3	1 38.0) 41.	1 55.2	14.79) 5	22.87	31.86	34.57	37.0	6.06	5	20.9	4 3	3.61 3	36.44	54.1	11.99	7												Τ	Т
Pool Max depth (ft)	0.944	1.95	6 1.85	7 3.01	2 0.77	7 5	2.58	3.1	2.9	3.78	0.49	5	1.72	2.62	2.38	3.81	1 0.9	5	1.6	5 2.	.344	2.25	3.05	0.47	7													
Pool Spacing (ft)	73.48	108.	4 116.	9 126.	.4 24.5	6 4	94.9	165.4	4 174	2 218.3	3 56.67	′ 4	37.47	76.75	5 83.33	102.	9 30.28	4	61.4	4 1	07.8	93.69	164.1	36.98	7												T	
Pattern																																						
Channel Beltwidth (ft)	14	14.8	3 14.	5 15.9	9 -	3																																
Radius of Curvature (ft)	10.4	16.1	7 16.9	9 21.2	2 -	3										Datt			4		!!	ما من ام		ما مامند ما		مهما مامهم			in dia at									
Rc:Bankfull width (ft/ft)	1.5	2	2	2.5	; -	3										Patte	ern data v	viii not	typically	/ be (al data, d om basel		nal data	or profi	le data	indica	te								
Meander Wavelength (ft)	67.3	80.1	1 70	103	3 -	3													_					_	•	_	_	_										
Meander Width Ratio	1.9	4.6	2.0	9.8	3 -	3																																
Additional Reach Parameters																																						
				Γ4			—			F 4					_				-				- 4														_	
⁵ Rosgen Classification ⁵ Channel Thalweg length (ft)				E4			-			E4						E4			_				E4										┣──					
⁵ Sinuosity (ft)				1507						1507 1.07						507 .07			_				507										┣──					
Water Surface Slope (Channel) (ft/ft)																.07 0092			_				.07										┣──					
				.0089						.0091						0092 0092			_				009 0093										<u> </u>					
BF slope (ft/ft) ³ Ri% / Ru% / P% / G% / S%		-	-	.0092	- 1			I -	<u> </u>		T -			- 1	- 0.0	- 1092	-				—	0.0	090												1	Τ	—	
³ SC% / Sa% / G% / C% / B% / Be%															_		-			+									-	+			┢───			+	+	+
³ d16 / d35 / d50 / d84 / d95 /																				+						<u> </u>			+	-						+	+	+
² % of Reach with Eroding Banks	_									-									_					I				1					┢───		1	<u> </u>	_	
Channel Stability or Habitat Metric				-						-						-															┢───							
Biological or Other							-			-						-																	┢──					
Shaded cells indicate that these will typically not be				-						-			1			-																	<u> </u>					

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4 = Of value/needed only if the n exceeds 3 5 = Reflects baseline monitoring values

													Exhibi	t Tab							r eam 500 -				nmar	y												
Parameter			Ba	seline					r	/IY-1						MY-		Ciee		5 #92	500 -		/-3					N	1Y- 4						M	(- 5		
		1	T	1		1			7	-	-	-			Т	1	-	1					T	1			T	T						1	ſ	T		
Dimension and Substrate - Riffle only		Mea		Ma				Mear				⁴ n	Min				Max		n		Mean	Med		SD^4	n	Min	Mear	Mec	d Ma	ax S	SD ⁴	n	Min	Mean	Med	Max	SD^4	n
Bankfull Width (ft)										65 9.93		2	8.4				9.12	-	2	5.69		6	8.41	1.49														
Floodprone Width (ft)		-			3 21.83	3 4	16.1	5 19.48	3 19.4	8 22.8	1 -	2	28.9	4 50	.97 50	0.97	73	-	2	16	22	24	26	5.29	3													
Bankfull Mean Depth (ft)	0.37	0.87	7 0.84	-	3 0.464	_	0.4	0.6	0.6	6.0	-	2	0.54	0.	73 0	.73	0.92	-	2	0.5	0.737	0.71	1	0.25	3													
¹ Bankfull Max Depth (ft)	0.56	1.09	8 0.95	5 1.92	2 0.589	9 4	0.64	0.77	0.7	7 0.9	-	2	0.73	0.9	965 0.	965	1.2	-	2	0.68	0.943	0.96	1.19	0.26	3													
Bankfull Cross Sectional Area (ft ²)	3.14	7.56	8 6.84	13.4	5 4.66	9 4	3.95	5.17	5.17	6.4	-	2	4.55	6.	46 6	.46	8.37	-	2	4.23	4.717	4.24	5.68	0.83	3													
Width/Depth Ratio	6.57	12.2	3 9.82	5 22.6	9 7.233	3 4	10	17.48	3 17.4	8 24.9	6 -	2	9.94	12	.73 12	2.73	15.51	-	2	5.7	10.29	8.51	16.67	5.70	3													1
Entrenchment Ratio	1.57	2.88	3 1.9	6.1	5 2.20	1 4	2.02	2.16	2.1	6 2.3	-	2	2.02	5.3	355 5.3	355	8.69	-	2	2.67	3.327	3.09	4.22	0.80	3													
¹ Bank Height Ratio	0.73	0.93	3 1	1	0.13	5 4	0.98	1.05	1.0	5 1.12	2 -	2	1.02	1.	09 1	.09	1.16	-	2	1.24	1.613	1.61	1.99	0.38	3													
Profile																																						
Riffle Length (ft)	4.82	9.82	6 8.81	18.4	6 5.272	2 5	16.4	9 44.86	6 42	78.7	9 22.8	5 5	12.4	3 33	.85 33	3.74	47.95	14.26	5	18.56	34.4	35.79	46.62	12.67	5													
Riffle Slope (ft/ft)									_	3 0.02				_	_	_		0.005			2 0.017																	
Pool Length (ft)		_		_			_	9 32.24	-	-	_	_		_				46.17		_	5 36.02																	
Pool Max depth (ft)		_		_			_		_	3 3.57	_	-		_	_	_		_		_	1.948																	
Pool Spacing (ft)							31.2	3 107.2	2 106	.5 184.	4 62.	54	43.3	9 80	.66 8	9.2	99.37	22.12			5 137.6			53.12														
Pattern				-					-																													
Channel Beltwidth (ft)	13.7	15.7	7 13.8	19.	3 -	3																																
Radius of Curvature (ft)		_				3										Ē		•		-		•	•			-	-		•									
Rc:Bankfull width (ft/ft)		3.9			-	3											Pattern	n data w	ill not ty	pically I	collec sig	ted unle nificant				onal data	a or pro	file data	a indica	ate —								
Meander Wavelength (ft)		64.1	46	105	5 -	3															oig	mount		in babb														
Meander Width Ratio						3										Ē																						
				I																																		
Additional Reach Parameters																																						
⁵ Rosgen Classification				34c						B4c						B4c	c					В	4c															
⁵ Channel Thalweg length (ft)			-	758						758						758	3					7	58															
⁵ Sinuosity (ft)				1.15						1.15						1.15	5					1.	15															
Water Surface Slope (Channel) (ft/ft)			0.	0089					0	.0095						0.008	81					0.0	086															
BF slope (ft/ft)			0.	0083					0	.0082						0.00	8					0.0	093															
³ Ri% / Ru% / P% / G% / S%	-	-	-	-	-		· ·	-	-	-	-		-		-	-	-	-								Ī												
³ SC% / Sa% / G% / C% / B% / Be%																					1					Ī	1	1										
³ d16 / d35 / d50 / d84 / d95 /																																						
² % of Reach with Eroding Banks				-						-						-													8									
Channel Stability or Habitat Metric				-			1			-						-				1																		
Biological or Other				-			1			-						-				1																		
Shaded cells indicate that these will typically not be		-																															L					

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
 3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3
5 = Reflects baseline monitoring values

Appendix E Hydrologic Data

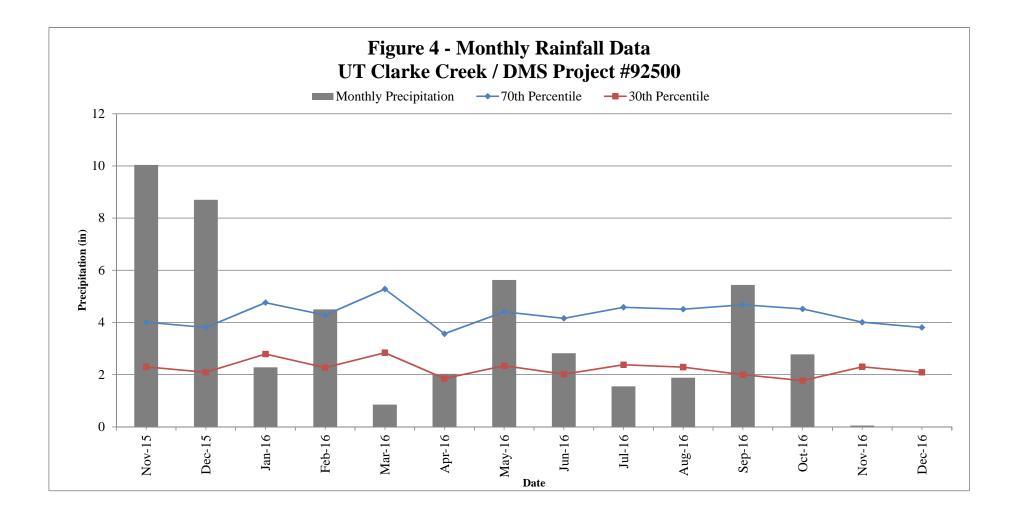
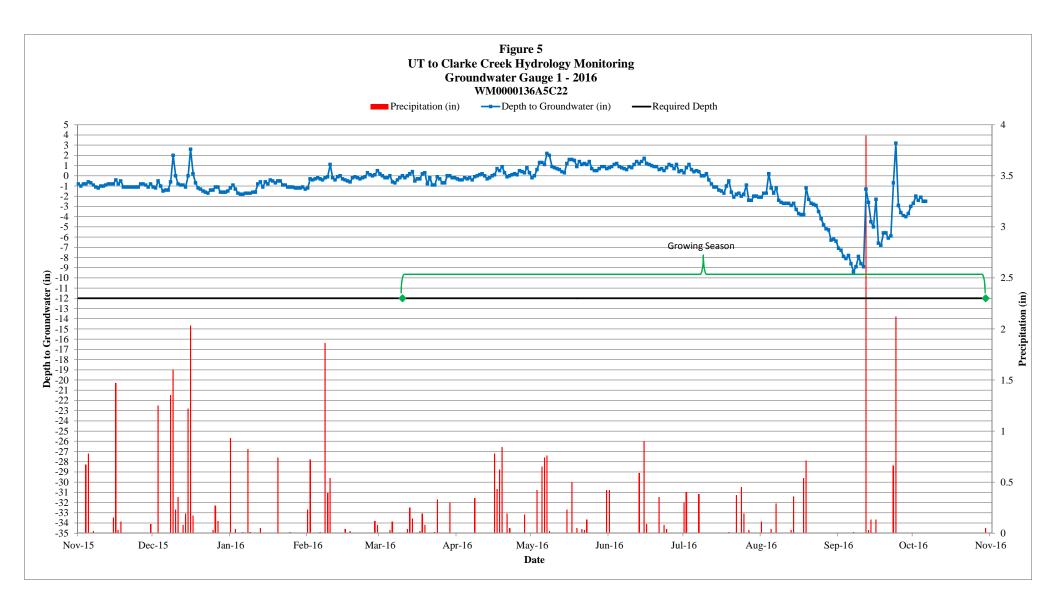
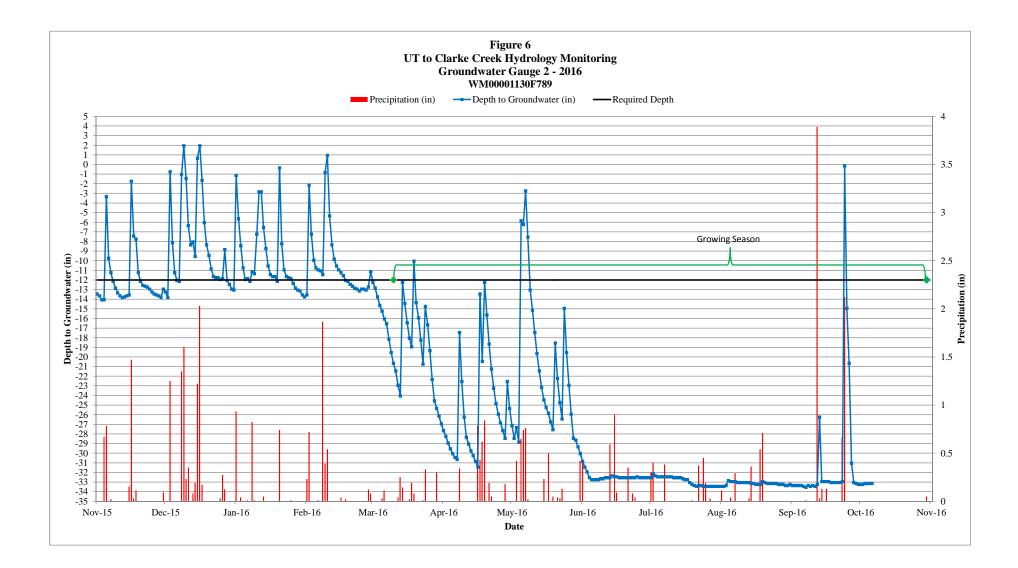
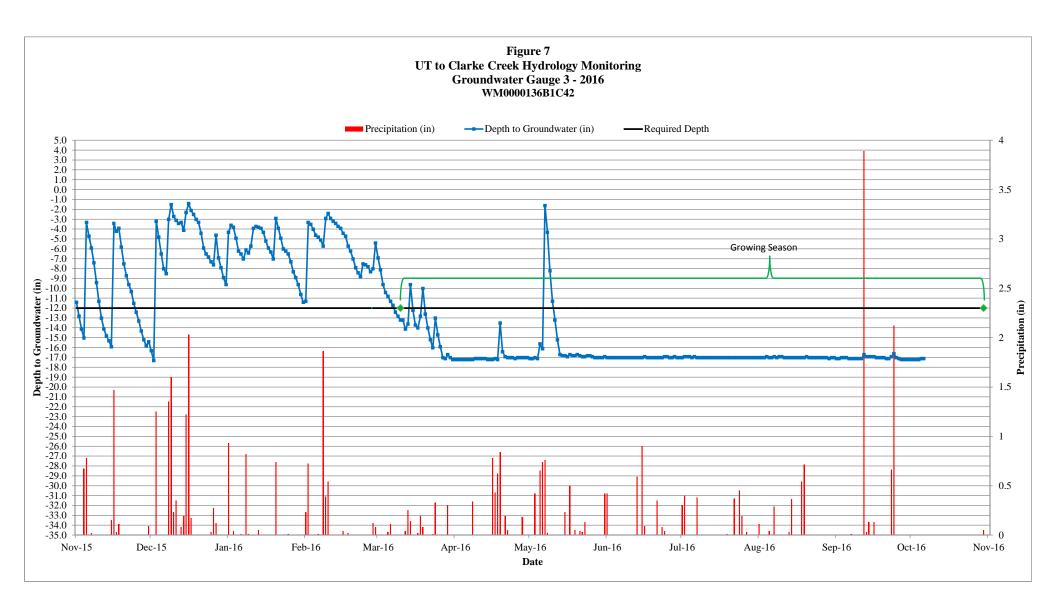
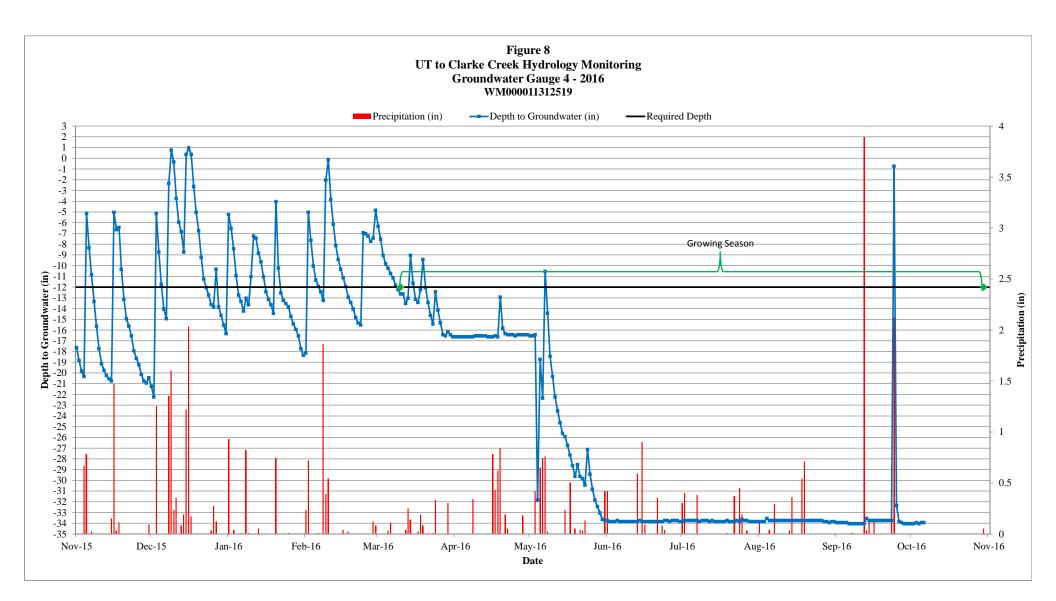

	Table 12. Verification UT to Clarke Creek - D		
Date of Data Collection	Date of Occurrence	Method	Photo
2/19/2014	2/19/2014	Visual observation of wrack lines	See photo from Baseline Monitoring Report
9/18/2014	Between 2/19/2014 and 9/18/2014	Crest Gauge Reading*: 20" above bankfull (UT1) and 15.5" above bankfull (UT Clarke Creek); Visual observation of wrack lines	See photo from MY01 Annual Monitoring Report
9/18/2014	Between 2/19/2014 and 9/18/2014	Crest Gauge Reading*: 20" above bankfull (UT1) and 15.5" above bankfull (UT Clarke Creek); Visual observation of wrack lines	See photo from MY02 Annual Monitoring Report
4/15/2015	Between 9/18/2014 and 4/15/2015	Crest Gauge Reading: 7" above bankfull (UT1) and 8.5" above bankfull (UT Clarke Creek); Visual observation of bankfull event and wracklines	See photo from MY02 Annual Monitoring Report
10/22/2015	Between 4/15/2015 and 10/22/2015	Crest Gauge Reading*: 20" above bankfull (UT1) and 19" above bankfull (UT Clarke Creek); Visual observation of wrack lines	See photo from MY02 Annual Monitoring Report
5/18/2016	Between 10/22/2015 and 5/18/2016	Crest Gauge Reading* 12.5" above bankfull (UT1) and 24" above bankfull (UT Clarke Creek); visual observation of wrack lines	No wrack line photos captured during this monitoring period. See below for crest gauge photo.
10/21/2016	Between 5/18/2016 and 10/21/2016	Crest Gauge Reading* 13" above bankfull (UT1) and 11" above bankfull (UT Clarke Creek)	No wrack line photos captured during this monitoring period. See below for crest gauge photo.

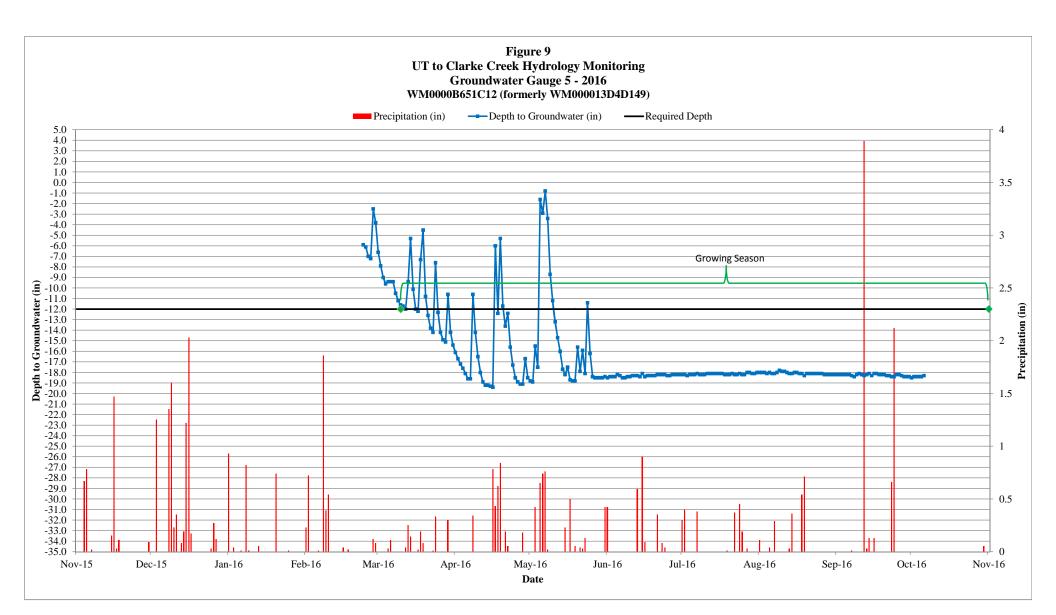
Photo 1: 05/18/16 - Crest gauge indication of bankfull event.




Photo 2: 10/21/16 - Crest gauge indication of bankfull event.




Table 13. Wetland Gauge Attainment Data					
	Success Criteria Achieved/Max Consecutive Days During Growing Season				
Gauge	(Percentage)				
	Year 1 (2014)	Year 2 (2015)	Year 3 (2016)	Year 4 (2017)	Year 5 (2018)
	Yes/236 days	Yes/177 days	Yes/213 days		
1	(99%)	(74%)	(92%)		
	No/23 days	No/25 days	No/4 days		
2	(10%)	(10%)	(2%)		
	Yes/45 days	No/24 days	No/4 days		
3	(19%)	(10%)	(2%)		
4	No/12 days	No/11 days	No/1 day (0%)		
	(5%)	(5%)			
	Yes/47 days	No Data ^b	No/6 days		
5	(20%)	No Data	(3%)		
6	Yes/45 days	No Data ^b	No/6 days		
	(19%)		(3%)		
	Yes/64 days	Yes/63 days	No/9 days		
7	(27%)	(26%)	(4%)		
8	No/0 days	No Data ^b	No/6 days		
	(0%)		(3%)		
		No/7 days	No/19 days		
9 ^a	No Data	(10% of days	(8%)		
		with data)	(870)		
10 ^a	No Data	No/6 days	No/9 days (4%)		
		(8% of days			
		with data)			
11 ^a	No Data	No/1 day (1%	No/15 days (6%)		
		of days with			
		data)			


^aWell installed after start of 2015 growing season; therefore, gauge data not available ^bWell malfunction - no data during growing season

